
Memory Management and
Garbage Collection

Managing Memory

Managing Memory

• Storage management is still a hard problem in modern
programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on...

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time and

program text from the source

Managing Memory

• This is an old problem:

– studied since the 1950s for LISP

• There are well-known techniques for
completely automatic memory management

• Became mainstream with the popularity of
Java

Managing Memory

• When an object is created, unused space is

automatically allocated

• After a while there is no more unused space

• Some space is occupied by objects that will
never be used again

– This space can be freed to be reused later

Managing Memory

• How do we know an object will “never be
used again”?

• Observation: a program can use only the
objects that it can find:

 …

var x = new Object();

x = y;

Managing Memory

• An object x is reachable if and only if:
– a register contains a pointer to x, or

– another reachable object y contains a pointer to x

• You can find all reachable objects by starting
from registers and following all the pointers

• An unreachable object can never be used
– such objects are garbage

Managing Memory

• An accumulator
– it points to an object
– and this object may point to other objects, etc.

• And a stack pointer

– each stack frame contains pointers
• e.g., method parameters

– each stack frame also contains non-pointers
• e.g., return address

– if we know the layout of the frame we can find the
pointers in it

Managing Memory

• We start tracing from acc and stack

– These are the roots

• Note B and D are unreachable from acc and stack

– Thus we can reuse their storage

Managing Memory

• Every garbage collection scheme has the
following steps
1. Allocate space as needed for new objects

2. When space runs out:
a) Compute what objects might be used again (generally by

tracing objects reachable from a set of “root” registers)

b) Free the space used by objects not found in (a)

• Some strategies perform garbage collection
before the space actually runs out

Mark and Sweep

Mark and Sweep

• When memory runs out, GC executes two phases

– the mark phase: traces reachable objects

– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit

– reserved for memory management

– initially the mark bit is 0

– set to 1 for the reachable objects in the mark phase

Mark and Sweep

Mark and Sweep

• The sweep phase scans the heap looking for
objects with mark bit 0
– these objects were not visited in the mark phase

– they are garbage

• Any such object is added to the free list

• Objects with a mark bit 1 have their mark bit
reset to 0

Mark and Sweep

Mark and Sweep

Mark and Sweep: Quiz

Choose the correct final heap after mark and sweep garbage collection.

Mark and Sweep

• While conceptually simple, this algorithm has
a number of tricky details
– typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space

– yet it needs space to construct the todo list

– the size of the todo list is unbounded so we
cannot reserve space for it a priori

Mark and Sweep

• The todo list is used as an auxiliary data structure
to perform the reachability analysis

• There is a trick that allows the auxiliary data to be
stored in the objects themselves
– pointer reversal: when a pointer is followed it is

reversed to point to its parent

• Similarly, the free list is stored in the free objects

themselves

Mark and Sweep

• Space for a new object is allocated from the free list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment the memory
– merge free blocks possible

• Advantage: objects are not moved during GC

– no need to update the pointers to objects
– works for languages like C and C++

Stop and Copy

Stop and Copy

• Memory is organized into two areas
– old space: used for allocation

– new space: used as a reserve for GC

• The heap pointer points to the next free word
in the old space

• Allocation just advances the heap pointer

Stop and Copy

• Starts when the old space is full

• Copies all reachable objects from old space into
new space
– garbage is left behind
– after the copy phase the new space uses less space

than the old one before the collection

• After the copy the roles of the old and new

spaces are reversed and the program resumes

Stop and Copy

Stop and Copy

• We need to find all the reachable objects, as for
mark and sweep

• As we find a reachable object we copy it into the
new space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy a

forwarding pointer to the new copy
– when we later reach an object with a forwarding

pointer we know it was already copied

Stop and Copy

• We still have the issue of how to implement
the traversal without using extra space

• The following trick solves the problem:

– partition the new space in three contiguous
regions

Stop and Copy

Stop and Copy

• Step 1: Copy the objects pointed to by roots
and set forwarding pointers

Stop and Copy

• Step 2: Follow the pointer in the next unscanned
object (A)

– copy the pointed-to objects (just C in this case)

– fix the pointer in A

– set forwarding pointer

Stop and Copy

• Follow the pointer in the next unscanned object (C)

– copy the pointed objects (F in this case)

Stop and Copy

• Follow the pointer in the next unscanned object (F)

– the pointed object (A) was already copied. Set the pointer
same as the forwading pointer

Stop and Copy

• Since scan caught up with alloc we are done

• Swap the role of the spaces and resume the program

Stop and Copy

Stop and Copy: Quiz
Choose the correct
final heap after stop
and copy garbage
collection.

Stop and Copy

• As with mark and sweep, we must be able to
tell how large an object is when we scan it

– and we must also know where the pointers are
inside the object

• We must also copy any objects pointed to by
the stack and update pointers in the stack

– this can be an expensive operation

Stop and Copy

• Stop and copy is generally believed to be the fastest GC
technique

• Allocation is very cheap
– just increment the heap pointer

• Collection is relatively cheap

– especially if there is a lot of garbage
– only touch reachable objects

• But some languages do not allow copying
– C, C++

V8’s GC

V8: Heap Organization

• New-space

– Most objects are allocated here. New-space is small and is designed to be garbage collected very
quickly, independent of other spaces.

• Old-pointer-space

– Contains most objects which may have pointers to other objects. Most objects are moved here after
surviving in new-space for a while.

• Old-data-space

– Contains objects which just contain raw data (no pointers to other objects). Strings, boxed numbers,
and arrays of unboxed doubles are moved here after surviving in new-space for a while.

• Large-object-space

– This space contains objects which are larger than the size limits of other spaces. Each object gets its
own mmap'd region of memory. Large objects are never moved by the garbage collector.

• Code-space

– Code objects, which contain JITed instructions, are allocated here. This is the only space with
executable memory (although Codes may be allocated in large-object-space, and those are
executable, too).

• Cell-space, property-cell-space and map-space

– These spaces contain Cells, PropertyCells, and Maps, respectively. Each of these spaces contains
objects which are all the same size and has some constraints on what kind of objects they point to,
which simplifies collection.

V8: Space Structure

V8’s GC: Discovering Pointers

• Distinguishing pointers and data on the heap is the
first problem any garbage collector needs to solve.

• V8 uses tagged pointers

– With this approach, we reserve a bit at the end of each
word to indicate whether it is pointer or data. This
approach requires limited compiler support, but it's simple
to implement while being fairly efficient. V8 takes this
approach. Some statically typed languages, such as OCaml,
also take this approach.

V8’s GC: Generational Collection

• Objects tend to die young: most objects have a very
short lifetime, while a small minority of objects tend
to live much longer

• V8 divides the heap into two generations:

– New-space – garbage collected by stop and copy algorithm
(scavenge – minor garbage collection cycle)

– Old-space – garbage collected by mark-sweep or mark-
compact algorithm

V8’s GC: Write barriers

• What if a live object in old-space
contains the only pointer to an object
in new-space?

• Whenever a pointer to an object in
new-space is written to a field of an
object in old-space, we record the
location of that field in the store
buffer. In order to accomplish this,
after most stores, we execute a bit of
code called a write barrier, which
detects and records these pointers.

V8’s GC: Marking

• There are three marking states for objects

– white - it has not yet been discovered by the garbage
collector.

– grey - it has been discovered by the garbage collector, but
not all of its neighbors have been processed yet.

– black - it has been discovered, and all of its neighbors have
been fully processed.

V8’s GC: Marking
• The marking algorithm is essentially a depth-

first-search

• At the beginning of the marking cycle, the
marking bitmap is clear, and all objects are
white.

• Objects reachable from the roots are colored
grey and pushed onto the marking deque.

• At each step, the GC pops an object from the
deque, marks it black, marks neighboring white
objects as grey, and pushes them onto the
deque.

• The algorithm terminates when the deque is
empty and all discovered objects have been
marked black.

V8’s GC: Sweep/Compact

• Once marking is complete, we can
reclaim memory by either sweeping or
compacting. Both algorithms work at a
page level

• The sweeping algorithm scans for
contiguous ranges of dead objects,
converts them to free spaces, and adds
them to free lists.

• The compacting algorithm attempts to
reduce actual memory usage by
migrating objects from fragmented
pages (containing a lot of small free
spaces) to free spaces on other pages.

V8’s GC: Incremental marking

• Incremental marking allows the heap to be marked in a series
of small pauses, on other order of 5-10 ms each (on mobile).

• The object graph can change - we need to watch out for is for
pointers being created from black to white objects.

• Write barriers come to our rescue. Not only do they record
old→new pointers, but they also detect black→white
pointers.

• When such a pointer is detected, the black object is changed
to grey and pushed back onto the marking deque.

V8’s GC: Lazy/parallel sweeping

• Rather than sweeping all pages at the same time, the garbage
collector sweeps pages on an as-needed basis until all pages
have been swept.

• Parallel sweeping: since the main execution thread won't
touch dead objects, pages can be swept by separate threads
with a minimal amount of synchronization.

