
Just in Time CompilationJust in Time Compilation

Evgeny Gavrin

JIT Compilation: What is it?

“Compilation done during execution of a
program (at run time) rather than prior to
execution” -Wikipediaexecution” -Wikipedia

● JVM
● CLR
● Python/Ruby etc
● JavaScript Engines

Outline

● Traditional Compilation and Execution● Traditional Compilation and Execution
● Interpreters
● JIT Compilation
● Optimization Techniques in JIT
● Simple JIT

Introduction

● A compiler compiles source code to bytecode
readable by VM

● VM interprets bytecode to machine
instructions at runtime

Traditional Compilation and
Execution

instructions at runtime

Interpreters

● Switch statement

● Direct threading
● Indirect threading
● Token threading● Token threading

● Advantages
o platform independence

reflection (modification of program at runtime)

Traditional Compilation and
Execution

o reflection (modification of program at runtime)

● Drawbacks
o need memory

o not as fast as running pre-compiled machine
instructions

Speeding up interpretation

● Interpreter optimization
● Compiler optimization● Compiler optimization
● Just in Time compiler
● Type Inference
● Hidden Type
● Method inline, PICs

Direct threading

Inline Threading

● Combine speed of compiled code with
flexibility of interpretation

Goals in JIT Compilation

flexibility of interpretation

Goal: “surpass the performance of static
compilation, while maintaining the advantages
of bytecode interpretation” -Wikipedia

Astronaut View on JIT

● Compiler compiles source code to bytecode
readable by VM

● VM compiles bytecode at runtime into
machine instructions as opposed to

JIT Compilation

machine instructions as opposed to
interpreting

● Run compiled code

● Can perform optimizations
o more than 70 available

● Native code execution is faster than bytecode
interpretation

Advantages of JIT
Compilation

interpretation

● Startup Delay
o compilation of bytecode -> machine code takes time
o bytecode interpretation may run faster on earlier

stages

Drawback of JIT compilation

stages

● Limited set of optimization b/c of time
o Regular JSE applies no more than 10 opts
o Server-side JVM applies more than 70+

● JIT has to be implemented for each targeted
architecture

Optimization

● Detect frequently used bytecode instructions
& optimize
o # of times a method executed
o detection of loops

Optimization techniques

o detection of loops

● Combine interpretation with JIT Compilation

● Useful in longer running programs
o have more runtime information
o have time to perform more optimization

Optimizations in JIT
speculative (profile-based) techniques

optimistic nullness assertions
optimistic type assertions
optimistic type strengthening
optimistic array length

strengthening
untaken branch pruning
optimistic N-morphic inlining
branch frequency prediction

flow-sensitive rewrites
conditional constant

propagation
dominating test detection
flow-carried type

narrowing
dead code elimination

language-specific techniques

loop transformations

loop unrolling
loop peeling
safepoint elimination
iteration range splitting
range check elimination
loop vectorization

global code shaping

inlining (graph integration)
global code motion
heat-based code layout
switch balancing
throw inlining

branch frequency prediction
call frequency prediction

proof-based techniques
exact type inference
memory value inference
memory value tracking
constant folding
reassociation
operator strength reduction
null check elimination
type test strength reduction
type test elimination
algebraic simplification
common subexpression

elimination
integer range typing

language-specific techniques
class hierarchy analysis
devirtualization
symbolic constant

propagation
autobox elimination
escape analysis
lock elision
lock fusion
de-reflection

memory and placement transformation
expression hoisting
expression sinking
redundant store

elimination
adjacent store fusion
card-mark elimination
merge-point splitting

control flow graph transformation

local code scheduling
local code bundling
delay slot filling
graph-coloring register

allocation
linear scan register allocation
live range splitting
copy coalescing
constant splitting
copy removal
address mode matching
instruction peepholing
DFA-based code generator

Optimizations in V8
● Dynamic type feedback
● Inlining
● Representation inference
● Static type inference
● UInt32 analysis

Canonicalization● Canonicalization
● Global value numbering (GVN)
● Loop invariant code motion (LICM)
● Range analysis
● Redundant bounds check elimination
● Array index dehoisting
● Dead code elimination

Tiered compilation

● level 0 - Interpreter● level 0 - Interpreter
● level 1 - Baseline JIT (part. opt/no profile)
● level 2 - Baseline JIT (part. opt/profile)
● level 3 - Optimizing JIT (full opt/profile)

Register allocation

● Linear Scan
● Graph Coloring

How to create own JIT compiler?

How JIT work?

● Method JIT, Trace JIT, RegExp JIT
● Code generation
● Register allocation● Register allocation

● mmap/new/malloc (mprotect)
● generate native code
● c cast/resinterpret_cast
● call the function

JavaScriptCore

Example of Simple JIT
int main(int argc, char *argv[]) {

// Machine code for:

// mov eax, 0

// ret

unsigned char code[] = {0xb8, 0x00, 0x00, 0x00, 0x00, 0xc3};

// Overwrite immediate value "0" in the instruction

// with the user's value. This will make our code:

// mov eax, <user's value>// mov eax, <user's value>

// ret

int num = atoi(argv[1]);

memcpy(&code[1], &num, 4);

// Allocate writable/executable memory.

// Note: real programs should not map memory both writable

// and executable because it is a security risk.

void *mem = mmap(NULL, sizeof(code), PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, code, sizeof(code));

// The function will return the user's value.

int (*func)() = mem;
return func();

}

