
Concurrency & Parallel
programming patterns

Evgeny Gavrin

Outline

1. Concurrency vs Parallelism
2. Patterns by groups
3. Detailed overview of parallel patterns
4. Summary
5. Proposal for language

Concurrency vs Parallelism
● Parallelism is the simultaneous execution of computations

“doing lots of things at once”

● Concurrency is the composition of independently execution processes
“dealing with lots of thing at once”

Patterns by groups

Architectural Patterns
These patterns define the overall architecture for a program:

● Pipe-and-filter: view the program as filters (pipeline stages) connected by pipes (channels).
Data flows through the filters to take input and transform into output.

● Agent and Repository: a collection of autonomous agents update state managed on their behalf in a central repository.
● Process control: the program is structured analogously to a process control pipeline with monitors and actuators

moderating feedback loops and a pipeline of processing stages.
● Event based implicit invocation: The program is a collection of agents that post events they watch for and issue events

for other agents. The architecture enforces a high level abstraction so invocation of an agent is implicit; i.e. not hardwired
to a specific controlling agent.

● Model-view-controller: An architecture with a central model for the state of the program, a controller that manages the
state and one or more agents that export views of the model appropriate to different uses of the model.

● Bulk Iterative (AKA bulk synchronous): A program that proceeds iteratively … update state, check against a termination
condition, complete coordination, and proceed to the next iteration.

● Map reduce: the program is represented in terms of two classes of functions. One class maps input state (often a
collection of files) into an intermediate representation. These results are collected and processed during a reduce phase.

● Layered systems: an architecture composed of multiple layers that enforces a separation of concerns wherein (1) only
adjacent layers interact and (2) interacting layers are only concerned with the interfaces presented by other layers.

● Arbitrary static task graph: the program is represented as a graph that is statically determined meaning that the structure
of the graph does not change once the computation is established. This is a broad class of programs in that any arbitrary
graph can be used.

Computational Pattern
These patterns describe computations that define the components in a programs architecture.

● Backtrack, branch and bound: Used in search problems … where instead of exploring all possible points in the search
space, we continuously divide the original problem into smaller subproblems, evaluate characteristics of the subproblems,
set up constraints according to the information at hand, and eliminate subproblems that do not satisfy the constraints.

● Circuits: used for bit level computations, representing them as Boolean logic or combinational circuits together with state
elements such as flip-flops.

● Dynamic programming: recursively split a larger problem into subproblems but with memorization to reuse past
subsolutions.

● Dense linear algebra: represent a problem in terms of dense matrices using standard operations defined in terms of Basic
linear algebra (BLAS).

● Finite state machine: Used in problems for which the system can be described by a language of strings.
The problem is to define a piece of software that distinguishes between valid input strings (associated with proper
behavior) and invalid input strings (improper behavior).

● Graph algorithms: a diverse collection of algorithms that operate on graphs. Solutions involve preparing the best
representation of the problem as a graph, and developing a graph traversal that captures the desired computation.

● Graphical models: probabilistic reasoning problems where the problem is defined in terms of probability distributions
represented as a graphical model.

● Monte Carlo: A large class of problems where the computation is replicated over a large space of parameters. In many
cases, random sampling is used to avoid exhaustive search strategies.

● N-body: Problems in which each member of a system depends on the state of every other particle in the system. The
problems typically involve some scheme to approximate the naïve O(N2) exhaustive sum.

● Sparse Linear Algebra: Problems represented in terms of sparse matrices. Solutions may be iterative or direct.
● Spectral methods: Problems for which the solution is easier to compute once the domain has been transformed into a

different representation. Examples include Z-transform, FFT, DCT, etc. The transform itself is included in this class of
problems.

● Structured mesh: Problem domains are mapped onto a regular mesh and solutions computed as averages over
neighborhoods of points (explicit methods) or as solutions to linear systems of equations (implicit methods)

● Unstructured mesh: The same as the structured mesh problems, but the mesh lacks structure and hence, the
computations involved scatter and gather operations.

Algorithm Patterns
These patterns describe parallel algorithms used to implement the computational patterns.

● Task parallelism: Parallelism is expressed as a collection of explicitly defined tasks. This pattern includes the
embarrassingly parallel pattern (no dependencies) and separable dependency pattern (replicated data/reduction).

● Data parallelism: Parallelism is expressed as a single stream of tasks applied to each element of a data structure. This is
generalized as an index space with the stream of tasks applied to each point in the index space.

● Recursive splitting: A problem is recursively split into smaller problems until the problem is small enough to solve directly.
This includes the divide and conquer pattern as a subset wherein the final result is produce by reversing the splitting
process to assemble solutions to the leaf-node problems into the final global result.

● Pipeline: Fixed coarse grained tasks with data flowing between them.
● Geometric decomposition: A problem is expressed in terms of a domain that is decomposed spatially into smaller

chunks. Solution is composed of updates across chunk boundaries, updates of local chunks, and then updates to the
boundaries of the chunks.

● Discrete event: a collection of tasks that coordinate among themselves through discrete events. This pattern is often used
for GUI design and discrete event simulations.

● Graph partitioning: Tasks generated by decomposing recursive data structures (graphs)

Software structure pattern
Program structure

● SPMD: One program used by all the threads or processes, but based on ID different paths or different segments
of data are executed.

● Strict data parallel: A single instruction stream is applied to multiple data elements.
This includes vector processing as a subset.

● Loop level parallelism: Parallelism is expressed in terms of loop iterations that are mapped onto multiple
threads or processes.

● Fork/join: Threads are logically created (forked), used to carry out a computation, and then terminated (joined).
● Master-worker/Task-queue: A master sets up a collection or work-items (tasks), a collection of workers pull

work-items from the master (a task-queue), carry out the computation, and then go back to the master for more
work.

● Actors: a collection of active software agents (the actors) interact over distinct channels.
● BSP: The Bulk Synchronous model from Leslie Valiant.

Data Structure Patterns
● Shared queue: this pattern describes ways to any of the common queue data structures and manage them in

parallel
● Distributed array: An array data type that is distributed about a threads or processes involved with a parallel

computation.
● Shared hash table: A hash table shared/distributed among a set of threads or processes with any concurrency

issues hidden behind an API.
● Shared data: a “catch all” pattern for cases where data is shared within a shared memory region but the data

can not be represented in terms of a well defined and common high level data structure.

Execution Patterns
Process/thread control patterns:

● CSP or Communicating Sequential Processes: Sequential processes execute independently and coordinate
their execution through discrete communication events.

● Data flow: sequential processes organized into a static network with data flowing between them.
● Task-graph: A directed acyclic graph of threads or processes is defined in software and mapped onto the

elements of a parallel computer.
● SIMD: A single stream of program instructions execute in parallel for different lanes in a data structure. There is

only one program counter for a SIMD program. This pattern includes vector computations.
● Thread pool: The system maintains a pool of threads that are utilized dynamically to satisfy the computational

needs of a program. The pool of threads work on queues of tasks. Work stealing is often used to enforce a more
balanced load.

● Speculation: a thread or process is launched to pursue a computation, but any update to the global state is held
in reserve to be entered once the computation is verified as valid.

Coordination Patterns:
● Message passing: two sided and one sided message passing
● Collective communication: reductions, broadcasts, prefix sums, scatter/gather etc.
● Mutual exclusion: mutex and locks
● Point to point synchronization: condition variables, semaphores
● Collective synchronization: e.g. barriers
● Transactional memory: transactions with roll-back to handle conflicts.

Detailed overview
 of

parallel patterns
*only the most interesting ones

Pattern by algorithm structure

Organization by
tasks

Organization by
data decomposition

Organization by
flow of data

RecursiveLinear RecursiveLinear RecursiveLinear

Task
parallelism

Divide and
conquer

Geometric
decomposition

Recursive
data Pipeline Event-based

coordination

Task parallelism vs Data parallelism

SPMD + SIMD

● Single program, multiple data
● Tasks are split up and run simultaneously on multiple

processors, each task has its own set of data.
○ Initialize
○ Obtain a unique identifier
○ Run the same program each processor
○ Distributed data
○ Finalize

SPMD usually refers to message passing
programming on distributed memory computer
architectures. A distributed memory computer
consists of a collection of independent computers,
called nodes.

SIMD imposes lockstep on different data

SPMD is the most common style of parallel programming

http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Lockstep_(computing)
http://en.wikipedia.org/wiki/SIMD

Recursive splitting (data + task)

Create small units of work to split over available processor capacity

Geometric decomposition 1
● Geometric decomposition

breaks an input collection
into sub-collection

● Partition is a special where
sub-collections do not
overlap

● Does not move data, it just
provides an alternative
“view” on its organization

Geometric decomposition 2

Split big amount of data on groups by types for further processing

Data (by type)

PE_RoundPE_Ugly PE_Ugly2

Master-worker/Thread pool
● Workers execute concurrently, with each worker repeatedly removing a

task from pool of the tasks
● Embarrassingly parallel

Master
Initiate computation

Init workers
Define tasks

Lunch workers

Wait
Collect results

Terminate computation

Discrete event (event-based)

Event-driven programming is widely used in GUI, for instance the Android concurrency frameworks
are designed using the Half-Sync/Half-Async pattern, where a combination of a single-threaded event
loop processing (for the main UI thread) and synchronous threading (for background threads) is used.

Single-threaded
event loop1 2 3 4

Events Event handlers

1 2 3 4

Sequence (Serial, not Parallel)

A

f

g

h

B

A serial sequence is executed in
the exact order given:

 F = f(A);
 G = g(F);
 B = h(G);

Pipeline

● Pipeline uses a sequence of
stages that transform a flow
of data

● Some stage may retain state

Examples:
● Instruction pipeline in modern

CPUs
● Algorithm level pipelining
● Signal processing
● cat main.c | grep ‘todo’ | wc

Superscalar Sequence (Data flow)
 F = f(A);
 G = g(F);
 H = h(B,G);
 R = r(G);
 P = p(F);
 Q = q(F);
 S = s(H,R);
 C = t(S,P,Q);

● Tasks ordered only by data
dependencies

● Tasks can run whenever
input data is ready

A

f

g

h

B

r

p

q

s

t

C

A

f

g

h

B

r

p q

s

t

C

Graph composition (decomposition)

1 3

2 4

TASK

Task-graph (Actors)
An actor is a computational entity that,
in response to a message it receives,
can concurrently:

● send a finite number of
messages to other actors;

● create a finite number of new
actors;

● designate the behavior to be
used for the next message it
receives.

● Actor may have several inputs
○ specified messages

● May have input buffer
○ Mailbox

● May have conditions:
○ pre start
○ pre/post restart
○ post stop complex nodes

Task-graph (Agents)

non-complex nodes

● Same as actors, but has number of limitations
● Cannot create tasks
● One input / One output (Tuple)
● No communication buffer

Fork/Join
● Parent tasks creates new task (fork) then waits until all

they complete (join) before continuing on with the
computation

● Fork/Join can be nested (to implement parallel for)

Parallel region

joinfork

Loop-based parallelism

i = 0
i = 1
i = 2
i = 3

i = 4
i = 5
i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

i = 12
i = 13
i = 14
i = 15

for (i = 0; i < 16; i++)

C[i] = A[i]+B[i];

The iteration pattern repeats
some section of code as long
as condition holds

 while (C) {
 f();
 }

Each iteration can depend on
values computed in any earlies
iteration

Loop can be terminated at any
point based on computations in
any iteration

Loop-based parallelism (map/foreach)
● Map replicates a function

over every element of an
index set

● The index set may be
abstract or associated with
the elements of an array

for (i=0; i<n; ++i) {
 f(A[i]);
}

Loop-based parallelism (reduction)
● Reduction combines

every element in a
collection into one element
using an associative
operator

b = 0;
for (i=0; i<n; ++i) {
 b += f(B[i]);
}

Loop-based parallelism (scan)
● Scan computes all partial

reductions of a collection

A[0] = B[0];
for (i=0; i<n; ++i) {
 A[i] = B[i] + A[i-1];
}

● Operator must be at least
associative

Example: Random number
generation

*one possible implementation

Speculative selection
● Selection chooses the

results from one of two
alternative tasks based on
a condition.

● Both alternative tasks are
executed in parallel while
the condition is being
evaluated.

● This pattern is most useful
for complex conditions

● Once the condition is
evaluated one of the two
alternative tasks needs to
be cancelled

Scatter/Gather

Scatter Gather

for (i = 0; i < N; ++i)
{
 x [i] = y [idx[i]];
}

for (i = 0; i < N; ++i)
{
 y [idx[i]] = x [i];
}

Distributed array
● Distributed array has

physically distributed data
● But can be access through

a shared data-like style

Shared Queue

Message
Queue

Message
Queue

Shared
Message

Pool

Message Buffers

Summary

Conclusion

● All these patterns looks great!
But some are useful anyway...

● People have been creating parallel
programming languages and frameworks for
many years…

Our goal: Use patterns to create
frameworks

Domain Developers should be able to create parallel applications with little or
no understanding of parallel programming

Parallel Programming Gurus (1-10% of programmers)

Domain Developers

Domain Experts

Parallel Patterns
&

Programming
Frameworks

Application
Frameworks

End-user
applications

Parallel
Programming
Frameworks

Application Patterns
&

Frameworks

Programmability evaluation

● Define set of
programmability
benchmarks
○ Must cover the major

classes of application and
parallel algorithms

● Programmability
benchmarks must be:
○ Provided as serial code in C
○ Contain lots of concurrency
○ Produce ‘right’ result that

can be easily verified
○ Short

● Maybe we could use an
“interesting” subset of
The thirteen dwarves:

● Dense Linear Alg.
● Sparse Lin. Alg.
● Spectral methods
● N-body methods
● Structured grids
● Unstruc. grids
● MapReduce
● Combinatorial logic
● Graph traversal
● Dynamic prog
● Back-track/branch and bound
● Graphical methods
● Finite state mach.

Useful patterns

● Event-based for UI only
● Loop-based

○ ordered sequential loop (for)
○ parallel loop

● Parallel-friendly collections and methods
○ Distributed Array
○ Loop-based patterns applied to collections

■ map/reduce/scan/recurrence/scatter/gather
● Task pool for user tasks

○ And maybe for ourselves
○ See next slide…

Using these patterns, threads and vector intrinsics can (mostly) be eliminated and the maintainability
of software improved

Nice Task Pool

● Difficult to tune properly to obtain the best
performance

● Prohibit any concurrency outside
the Task Pool

● Task = actor
● Intercommunication through mailboxes
● Actor may spawn other actors

○ parallel loop is also an actor
● Joint execution runtime for all applications

