
Optimizations



Why traditional languages are fast

• Types tell compiler the shape of o (fields and 

their offsets)



Scripting Languages Have No Types

• Objects are simply dictionaries from properties to values

• Properties can be added and removed at any time

• How to generate code when shape of o is unknown?



Scripting Languages Have No Types

• Objects are simply dictionaries from properties to values

• Properties can be added and removed at any time 

• Compilers introduce a type system behind the scenes



Scripting Languages Have No Types -> 

Slow

• A field access always entails a hash table lookup to get 
the offset



State-of-the-art Compilers do Type 

Specialization

• Type specialization: Optimizing code to be fast for 
the recorded types 

• Inline Cache (IC): Actual optimized code 



State-of-the-art Compilers do Type 

Specialization

• IC Hit: Execution encounters one of the recorded 

types -> Fast 



State-of-the-art Compilers do Type 
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• IC Miss: Execution results in a hash table lookup -> 

Very Slow
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State-of-the-art Compilers do Type 

Specialization

• IC Miss: Execution results in a hash table lookup -> 

Very Slow



Google Chrome V8: Ineffective for 

Many Real Websites

• Chrome V8 compiler not optimized for dynamism in 

real websites



Chrome V8 Type System is Too Brittle

• Chrome V8 type system encodes (other than 
properties): 

– Inheritance (i.e. address of parent object)

– Method bindings (i.e. addresses of functions called) 

• Helps in generating efficient code during type • Helps in generating efficient code during type 
specialization

– Inheritance: helps when accessing parent properties 

– Method bindings: helps resolve targets for method calls 

• V8 Assumption: inheritance and method bindings 
rarely change

– Reasonable since always true for statically typed languages



Inheritance in JavaScript: Prototype 

Objects

1. Create function foo (implicitly creates “parent” foo.prototype)

2. Create “child” o by calling foo (o inherits from foo.prototype)

3. Access “parent” property x in foo.prototype through inheritance 



How V8 Encodes Inheritance into 

Types

1. Create type that inherits foo.prototype (by linking through parent_ptr) 

2. Have all objects created by foo() have that type 

3. Access parent properties through type_ptr and parent_ptr links 



Problem: Rampant Type Creation 
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Problem: Rampant Type Creation 

1. Very counterintuitive: same code creates different 

types

2. Dynamic function creation: common pattern in 

website codewebsite code

– For encapsulation and ease of programming



Problem: Rampant Type Creation 
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Problem: Rampant Type Creation

Due to Encoding Method Bindings

• New type at end of each iteration, during the 

first N + 1 iterations - Where N is the number 

of function properties updated 

• O(N2) type objects created in total• O(N2) type objects created in total



Solution: Decouple Method Bindings 

from Types 



Solution: Decouple Method Bindings 

from Types 



Crankshaft



Hydrogen

• Enable inlining

• Permit temporary values to be represented as 

untagged integer or double values

• To facilitate loop-invariant code motion and • To facilitate loop-invariant code motion and 

common subexpression elimination



SSA

Hydrogen consists of values - instructions and phis - contained in basic 
blocks, which themselves are contained in a graph.

The standard SSA notation associates a named value with every 
expression:

t1 = x + y;

t2 = 3;

t3 = t1 + t2; ...



SSA

All values have a pointer to their containing 

block and to their uses.

Values also have a pointer to the next 

instruction in their block.

The last instruction in a block is a control The last instruction in a block is a control 

instruction.

Every block has an array of pointers to its 

predecessors and successors, and also to its 

dominator block, and to all the blocks that it 

dominates.



Crankshaft

• Not only does it have to optimize JavaScript, which is 
hard enough; it also has to do so in a way that 
permits on-stack replacement to optimize a long-
running loop, without exiting the loop.

• Crankshaft needs to walk the abstract syntax tree (AST) 
to emit Hydrogen code in the same way as the full 
compiler - simulate what the full compiler is doing: 
what is on the stack, which variables are heap-
allocated and which are not, and, for named local 
variables, what HValue is bound to that variable



OSR Example

function g () { return 1; } 

function f () {

var ret = 0;

for (var i = 1; i < 10000000; i++) 
{{

ret += g ();

}

return ret;

}



OSR Example
0 push rbp ;; Save the frame pointer. 

1 movq rbp,rsp ;; Set the new frame pointer. 

4 push rsi ;; Save the callee's "context object". 

5 push rdi ;; Save the callee's JSFunction object. 

6 subq rsp,0x28        ;; Reserve space for 5 locals.

10 movq rax,rsi ;; Store the context in a scratch register.

13 movq [rbp-0x38],rax ;; And save it in the last (4th) stack slot.13 movq [rbp-0x38],rax ;; And save it in the last (4th) stack slot.

17 cmpq rsp,[r13+0x0]  ;; Check for stack overflow 

21 jnc 28              ;; If we overflowed, 

23 call 0x7f7b20f40a00 ;; Call the overflow handler.

28 movq rax,[rbp+0x10] ;; Receiver object to rcx (unused).

32 movq rcx,rax ;;

35 movq rdx,[rbp-0x38] ;; Global objectcontext to rdx.

39 movl rbx,(nil)      ;; Loop counter (i) to 0.

44 movl rax,(nil)      ;; Accumulator (ret) to 0.

49 jmp 97              ;; Jump over some stuff.



OSR Example
Value f_and_g(Value receiver)

{

// Stack slots (5 of them)

Value osr_receiver, osr_unused, osr_i, osr_ret, arg_context;

// Dedicated registers

register int64_t i, ret;

arg_context = context;arg_context = context;

// Assuming the stack grows down.

if (&arg_context > root[STACK_LIMIT_IDX])

// The overflow handler knows how to inspect the stack.

// It can longjmp(), or do other things.

handle_overflow();

i = 0;

ret = 0;



OSR Example
54  movq rax, rsi

57  movq rbx, [rbp - 0x28]    ;; load loop counter

61  testb rbx, 0x1

64  jnz 189  (0x7f7b20fa2a7d)

70  shrq rbx, 32               

74  movq rdx, [rbp - 0x30]    ;; load acc

78  testb rdx, 0x1

81  jnz 237  (0x7f7b20fa2aad)

87  shrq rdx, 32

91  movq rcx, [rbp - 0x18]    ;; load receiver

95  xchgq rax, rdx



OSR Example
Check if the current definition of g, the function that we inlined below, is 

actually the same as when the inlining was performed.

97  movq rdx, [rsi + 0x2f]    ;; Slot 6 of the context : the global 
object.

101  movq rdi, 0x7f7b20e401e8 ;; Location of cell holding `g'

111  movq rdi, [rdi]          ;; Dereference cell111  movq rdi, [rdi]          ;; Dereference cell

114  movq r10, 0x7f7b205d7ba1 ;; The expected address of `g'

124  cmpq rdi, r10            ;; If they're not the same...

127  jnz 371                  ;; Deoptimization bailout 2



OSR Example
osr_after_inlining_g:

if (val_is_smi(osr_i))

i = val_to_smi(osr_i);

else

{

if (!obj_is_double(osr_i))

goto deoptimize_3;

double d = obj_to_double(val_to_obj(osr_i));

i = (int64_t)trunc(d);

if ((double)i != d || isnan(d))

goto deoptimize_3;

}



OSR Example
if (val_is_smi(osr_ret))

ret = val_to_smi(osr_ret);

else

{

if (!obj_is_double(osr_ret))

goto deoptimize_4;

double d = obj_to_double(val_to_obj(osr_ret));double d = obj_to_double(val_to_obj(osr_ret));

ret = (int64_t)trunc(d);

if ((double)ret != d || isnan(d))

goto deoptimize_4;

if (ret == 0 && signbit(d))

goto deoptimize_4;

}

goto restart_after_osr;



OSR Example
133  movq rdx, [rdx + 0x27] ;; Another redundant load.

137  cmpl rbx, 0x989680     ;; 10000000, you see.

143  jge 178                ;; If i >= 10000000, break.

149  movq rdx, rax ;; tmp = ret

152  addl rdx, 0x1          ;; tmp += 1

155  jo 384                 ;; On overflow, deoptimize.

161  addl rbx, 0x1          ;; i++161  addl rbx, 0x1          ;; i++

164  movq rax, rdx ;; ret = tmp

167  cmpq rsp, [r13 + 0x0]  ;; Reload stack limit.

171  jnc 137                ;; Loop if no interrupt,

173  jmp 306                ;; Otherwise bail out.

178  shlq rax, 32           ;; Tag rax as a small integer.

182  movq rsp, rbp ;; Restore stack pointer.

185  pop rbp ;; Restore frame pointer.

186  ret 0x8                ;; Return, popping receiver.



OSR Example
restart_after_osr:

if (*g_cell != expected_g)

goto deoptimize_1;

while (i < 10000000)

{

register uint64_t tmp = ret + 1;

if ((int64_t)tmp < 0)if ((int64_t)tmp < 0)

goto deoptimize_2;

i++;

ret = tmp;

// Check for interrupt.

if (&arg_context > root[STACK_LIMIT_IDX])

handle_interrupt();

}

return val_from_smi(ret);



AST-to-Hydrogen

• AST-to-Hydrogen translation process handles phi insertion. 

• So unlike the textbook dominance-frontier algorithm for 

optimal phi insertion, the HGraphBuilder simply adds phi 

values whenever a block has more than one predecessor, for values whenever a block has more than one predecessor, for 

every variable in the environment that is not always bound to 

the same value. For loops, a phi is added for every variable 

live in the environment at that time.

• A later pass attempts to prune the number of phis, where it 

can.



Type feedback

• AST has integer identifiers assigned to each node, which were 

are embedded in the inline caches used by the full-codegen

code. This correspondence allows crankshaft to know the 

types of the values that have been seen at any given call site, 

property access, etc.property access, etc.

• This information is used by the graph builder to initialize 

the typefield of each HValue, to help in type inference. 



inlining

• When the graph builder reaches a call, it can try to inline it. 

Note that this happens very early, before any optimizations 

are made on the source code.

Some conditions:Some conditions:

1. The function to be inlined is less than 600 characters long.

2. Neither the inner nor the outer functions may contain heap-allocated variables. 

(In practice, this means that neither function may contain lexical closures.)

3. Inlining of for-in, with, and some other expression types is not currently 

supported.

4. There is a limit on the maximum inlining depth.

5. A function's call to itself will not be inlined.

6. There is a limit to the number of nodes added to the AST.



Source-to-source optimization passes

• As parsing proceeds, Crankshaft generates specific 

HInstruction nodes and packs them into HBasicBlocks.

• There is a large set of about 120 instructions

• At this point, inlining is complete, so Crankshaft moves to 

focus on representation of temporary values. The goal is to 

unbox as many values as possible, allowing the use of native 

machine instructions, and decreasing the allocation rate of 

tagged doubles. The Hydrogen SSA language directly 

facilitates this control-flow and data-flow analysis.



Source-to-source optimization passes

• Block preordering

Crankshaft reorders the array of blocks in the HGraph to 

appear in reverse post-order, equivalent to a topological sort. 

In this way, iterating the array of blocks from beginning to end 

traverses them in data-flow order.traverses them in data-flow order.

• dominator assignment

The reverse post-order sort from the previous step facilitates 

calculation of the dominator for each block. The entry block 

dominates its successors. Other blocks are iterated over, in 

order, assigning them the dominator of their predecessors, or 

the common dominator of their predecessors if there is more 

than one.



Source-to-source optimization passes

• mark dead subgraphs

– It can often be the case that a function being optimized does not have 

full type information. If the parser reaches such a branch, then it 

inserts an unconditional soft deoptimization, to force the collection of 

more type information.

– To avoid the compiler wasting its time trying to optimize loops and – To avoid the compiler wasting its time trying to optimize loops and 

move code in parts of the graph that have never been reached, this 

dead-subgraph pass puts a mark on all blocks dominated by a block 

containing an unconditional soft deoptimization. As you can see, this 

analysis is facilitated by the SSA dominator relation.



Source-to-source optimization passes

• redundant phi elimination 
– This pass eliminates phi values whose input is always the same, replacing the uses with 

the use of the value.

– All phis are placed on a work list. Then, while there are any phis on the worklist, a phi is 

taken off the list, and if it is eliminatable, it is replaced. Now here's the trick: if the phi 

was in turn used by any other phi, the phi uses are pushed onto the list, if they weren't 

there already. Iteration proceeds until the worklist is empty.there already. Iteration proceeds until the worklist is empty.

• dead phi elimination, and phi collection

– Some phi values are dead, having no real uses, neither direct nor indirect (through some 

other phi). This pass eliminates any phi that doesn't have a real use. It's somewhat like a 

garbage collection algorithm, and also uses a worklist.

As the phis are collected, if any undefined value is found to reach a phi, 

or arguments can reach a phi only via some inputs, then optimization is 

aborted entirely.



Source-to-source optimization passes

• representation inference 

– HValue has a type field and a representation field

– The goal is to represent temporaries as untagged int32 or double 

values.

– For each phi, if any operand of the phi or any connected phi may not 

be converted to an int32, Crankshaft pessimistically marks the phi as be converted to an int32, Crankshaft pessimistically marks the phi as 

not convertible to an int32. 

– Finally, for all values with flexible representation - phis, Math.abs, and 

binary bitwise and arithmetic operations - Crankshaft determines the 

representation to use for that value.

– If the representation can be inferred directly from the inputs, then 

that representation is used. Otherwise, some heuristics are run on the 

representations needed by the use sites of the value.



Source-to-source optimization passes

• Range analysis 

– This pass looks at each value, and tries to determine its range, if Crankshaft 

was actually able to allocate a specialized representation for it.

– In practice this is mainly used for values represented as integers. It allows 

HInstructions to assert various properties about the instruction, such as lack of 

overflow, or lack of negative zero values.overflow, or lack of negative zero values.

• Type inference and canonicalization

– Representation is about how to use an object; type is about the object itself.

– Type inference can help eliminate runtime checks. 

– After type inference is run, each instruction in the whole graph is asked to 

canonicalize itself, which basically eliminates useless instructions: HToInt32 of 

a value with int32 representation, HCheckNonSmi of a value with non-smi

type, etc.



Source-to-source optimization passes

• representation changes

– Up to this point we've been dealing with values on a fairly high level, assuming 

that all of the definitions will be compatible with the uses. But as we chose to 

represent some temporaries as untagged values, there will need to be explicit 

conversions between representations -- hopefully not too many, but they will 

be needed. This pass inserts these representation changes.be needed. This pass inserts these representation changes.

– This pass uses the truncating-to-int32 and deoptimize-on-undefined flags 

calculated in previous phases, to tell the changes what conditions they need 

to watch out for. Representation changes for phis happen just before 

branching to the block with the phi -- effectively, just before calling the block.

• minus zero checks
– The previous pass probably inserted a number of HChange instructions. For any 

HChange from int32 (which must be to tagged or double), Crankshaft traces dataflow 

backwards to mark the HChange(s) that produced the int32 as deoptimizing on negative 

zero.



Source-to-source optimization passes

• stack check elimination

– Loops need to be interruptable, and V8 does so by placing a stack check at the 

beginning of each loop iteration. If the runtime wants to interrupt a loop, it 

resets the stack limit of the process, and waits for the process's next stack 

check.

– However if a call dominates all backward branches of a loop, then the loop can – However if a call dominates all backward branches of a loop, then the loop can 

be interrupted by the stack check in the callee's prologue, so the stack check 

in the loop itself is unneeded and can be removed.



Source-to-source optimization passes

At this point, Hydrogen has served two of its three purposes: inlining and unboxing. 

The third is loop-invariant code motion (LICM) and common subexpression

elimination (CSE). These important optimizations are performed by the perhaps 

misnamed global value numbering (GVN) pass.

• global value numbering: licm• global value numbering: licm

– LICM. For every instruction in a loop, if it only depends on values 

defined outside the loop, and the side effects of the loop as a whole 

do not prevent the move, then LICM hoists the instruction to the loop 

header. 

– Computes the side effects for the entire loop, and moves any 

instructions that it can to the loop header.



Source-to-source optimization passes

• global value numbering: cse
– A common subexpression is a Hydrogen value B that is "equal" in some sense to a 

previous instruction A, and whose value will not be affected by any side effects that 

occur on the control-flow paths between A and B.

– "value numbering" essentially means "define appropriate hash and 

equality functions and stick all the instructions you've seen in a hash equality functions and stick all the instructions you've seen in a hash 

table.“

– As GVN goes through the instructions of each block, in reverse-post-

order, it puts them into this hash table (HValueMap). When GVN 

reaches an instruction that causes side effects, it flushes out the 

entries that depend on those side effects from the table. In that way, if 

ever it sees an instruction B that is equal to an instuction A in the 

table, GVN can remove B from its block, and replace every use of B 

with a use of A.

– Global value numbering works across basic blocks, hence the "global" 

in its name.



Source-to-source optimization passes

• checked value replacement
– In optimized code, accessing an array out of its bounds will cause a deoptimization.

– AST-to-Hydrogen translation inserts a bounds check, and has the array access use the 

result of the bounds check. But the purpose of this instruction is just to cause the side 

effect of deoptimization, and the resulting value is just a copy of the incoming index, 

which increases register allocation pressure for no reason.which increases register allocation pressure for no reason.

– Crankshaft replaces uses of HBoundsCheck with the instruction that defines the index 

value, relying on the HBoundsCheck's position in the instruction stream to cause deopt

as needed.


