
Lomonosov Moscow State University

Faculty of Computational Mathematics and Cybernetics

Master course

DISTRIBUTED OBJECT TECHNOLOGIES

PART 2: DESIGN OF

SEMANTICALLY INTEROPERABLE

INFORMATION SYSTEMS

Summary of the course

By

Professor Leonid A. Kalinichenko

September, 2009

Moscow



1 Motivation

This part of the DOT course 1 is intended to show how the initial, most creative stage of an information
technology development might look like. Main objective of the specific technology used as an example is a
move from technical interoperability technique (e.g., CORBA) to semantic interoperability.

We remind that emphasis in object technologies has moved to development of common models and
architectures which efficiently provide for a capability of joint usage of (i) heterogeneous, (ii) pre-existing,
(iii) distributed software and information sources for application problem-solving. Such collaboration of
heterogeneous components (called ‘interoperability’) allows for composition of systems from pre-existing
heterogeneous and distributed components. This development paradigm of interoperable open systems
technology is unprecedented in scale.

At the same time Information Systems (IS) or Enterprise Information Systems (EIS) in particular should
become the infrastructures provided for collecting information and services from across the entire enterprise
thus giving all its workers complete and transparent access to information. Diverse forms of enterprise inter-
and intra-organizational models were developed (such as, virtual corporation, extended enterprise). A basic
issue for modeling of such distributed business activities, their collaboration is that there are many types
of elements to be modeled in an enterprise, and many perspectives and contexts in which those definitions
would be viewed. Often such elements can be implemented as legacy applications. Advanced enterprise
modeling approaches share the fundamental strategy of integrating at the model level - taking fragments of
information within the enterprise and placing them in a larger context. What model is to be taken, how a
proper context is to be formed and implemented and how semantic interoperability in such context can be
organized are the basic issues to study in this course.

It is important to note that there exist two principally different approaches to the problem of integrated
representation of multiple information resources for an EIS: 1) moving from resources to problems (an
integrated schema of multiple resources is created independently of specific applications) and 2) moving
from an application to resources (a description of an application subject domain (in terms of concepts, data
structures, functions, processes) is created, into which resources relevant to the application are mapped).
The first approach driven by information resources is not scalable with respect to the number of resources,
does not make semantic integration of resources in a context of specific application possible, does not lead
to justifiable identification of relevant to EIS resources, does not provide for enhancing of EIS stability
w.r.t. evolution of the relevant to EIS resources. These deficiencies are inherent to the Global as View
(GAV) approach. GAV might be used as a basic technique for the information resources driven approach.
The second approach (application-driven) assumes creation of an application model 2 that supports an
interaction between an application and resources on the basis of the application domain definition Such
technology has obvious advantages over the approach driven by specific information resources.

The middleware approach (e.g., CORBA) provides no application model but individual components that
can implement the application when assembled and interconnected by a software bus. The problem of
components is that they do not have clean semantic specifications to rely on for their reuse.

The gap between the existing Object Analysis and Design (OAD) methods applying mostly top-down
technique and the demand of the middleware architectures and methodologies for the development based on
a composition of interoperating components remains to be large.

A number of various computational, data and knowledge models (respective languages) based on an
object paradigm is continuously increasing. These models are used for development of software and data
services, information systems and their subsystems that technically can easily become components of the
middleware. Such heterogeneity and lack of well-defined semantics of the respective models creates a big

1The summary of the DOT course (Part 2) provides an overview of the main sections of the course. Thus the structure and
content of the course are defined. To simplify mastering of the course, the summary contains hyper references to the documents
in electronic form recommended for studying of the respective course sections. Among these documents are the course materials
and lecture notes, research papers and books. The referenced documents are in the form of PDF,PPT and PS files.

2Actually another concept is required here - the mediator instead of the application model. The mediation approach is a
comprehensive technique that requires separate course to study it. This is why we avoid using the mediator term in frame of
the DOT course. In case when this term or the term ”specification of requirements” will be met in the materials referenced
by this summary or by the list of the recommended literature, please, interpret a mediator specification or a specification of
requirements just as an application model specification.



obstacle for their interoperability.
But probably the largest obstacle for the interoperability of components consists in the application se-

mantics of components technically interrelated through the middleware (e.g., CORBA). Reconciliation of
their application concept bases (an obvious prerequisite for their interoperation) constitutes a problem.

This part of the Distributed Object Technology (DOT) course is focused on the approaches investigated
to fill in the gaps mentioned. We focus on the issues of semantics of the specifications we get on different
phases of the information system development.

• Semantics are the key issues to resolve. We strictly distinguish between application semantics and
object model semantics. Object models of IS as well as object specifications of pre-existing components
should be semantically clear to infer their most important for reuse relationships - whether a given
specification can be correctly substituted by another one. Such reasoning becomes possible only in
frame of formal modeling languages applying an idea of abstract interpretation. An introduction into
this area of software engineering will be provided.

• Another issue is how to compose specifications of reusable components or their parts to form an artifact
that can substitute a part of the application model of IS. Strict definition of subtyping as well as a type
algebra will be introduced.

• An advanced language for specification of IS and pre-existing components independently of the actual
models and languages used for their development will be also introduced as a canonical object model.

• Ontological modeling is discussed for expressing of the application domain semantics of the IS and of
the pre-existing components. Various approaches are introduced.

• Applying such fundamentals, and having in mind object-based interoperability-oriented middlewares
(such as CORBA) finally we go into the world of component-based information system design.

General ideas related to the problem of the Semantic Interoperability Reasoning (SIR) can be found in
the reports SIR framework, Ideas for SIR and Analysis and Design

2 Formal models and methods

2.1 An introduction into design based on formal models

The software engineering community has devised many techniques, tools, and approaches aimed at improving
software reliability and dependability. These have had varying degrees of success, some with better results
in particular domains than others, or in particular classes of applications. A popular approach is known as
formal methods, whereby a specification notation with formal semantics, along with a deductive apparatus
for reasoning, is used to specify, design, analyze, and ultimately implement software systems.

A key issue is the need for those applying formal methods to be able to abstract and to model systems at
an appropriate level of representation, that is, to develop solid design principles and apply them to software
development. This is particularly true when proving properties of more complex systems involving significant
concurrency and interoperation among components. When we wish to prove component properties and
relationships, it is often the only way to prove them at a more abstract level, exploiting the idea of abstract
interpretation.

Considering formal methods the course is focused mostly on those of them that provide for proof of a
possibility to correctly substitute a specification of an application with the specification of a component.

A strategy for compositional development applying formal methods is briefly considered in the slides of
the file A Strategy for formal methods

More on that can be found in the Strategies paper.

http://www.ipi.ac.ru/synthesis/student/dot/references/sirfrchpDOT.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/ACMJAP2C.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/SYNTOAD.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/DOT13Aformfoic.ppt
http://www.ipi.ac.ru/synthesis/student/dot/references/p74-fraser.pdf


2.2 Models and languages

A brief introduction into formal methods is provided. It is given in a form of several examples of interrelated
specifications of abstract data types (ADT) applying well known Z and Object-Z notations.

This introduction is given in the first section of the document ADT basics
If required, the description of Z notation can be found in Using Z as well as a collection of references to

the publications on Z is available in Z referenes.
Object-Z is an extension of the formal specification language Z to facilitate specification in an object-

oriented style. It is a conservative extension in the sense that the existing syntax and semantics of Z are
retained in Object-Z. An introduction to the Object-Z is provided in Object-Z

The main formal model and language required for the DOT course is the Abstract Machine Notation
(AMN) chosen due to the fact that for the purpose of design with reuse we need a formal basis to reason
that pre-existing component or its part can serve as an implementation of a fragment of an application
model specification. For the B technology (based on the AMN) specific tools exist providing for a proof
of specification refinement ()3. For understanding the relationship between Z and AMN please read about
Jean-Raymond Abrial.

An introduction into AMN is provided in the second section of the course material AMN. Another text,
introducing B AMN with more examples is given in B Method. References to the publications on B can be
found in B-related references.

In a form of lecture notes the information on formal methods is provided in Formal methods

3 Object types

3.1 Subtyping: strict definition

Subtyping (or subclassing in the object-oriented programming languages) is a well known relation. Regret-
fully very rare it is possible to meet a student who would know a strict definition of this relation semantics.
According to this definition a fact that type specification A and type specification B are in a subtype
relationship should be proved.

Good explanation of such definition is provided in the paper by Barbara Liskov A Behavioral Notion of
Subtyping

In a brief form this definition is given in the first section of the course material ADT basics. In a form
of lecture notes this information is provided also in Formal methods.

It is important to understand how definitions of subtyping and refinement are interrelated.

3.2 Type algebra (calculus)

Type specifications and their reducts are chosen as the basic units of specification manipulation. For their
manipulation, the algebra of type specifications is introduced. The algebra includes operations of reduct,
meet, join and product of type specifications. These operations are used to produce the specifications of the
respective compositions of their operands.

The reduct of a type is chosen as the minimal unit for reuse, manipulation and transformation of type
specifications. Reducts of the component type specifications can be used as minimal fragments potentially
reusable for the respected reducts of the analysis model types. The identification of the fact of type reducts
reusability is the basic concern of the design. For that the type specifications should be conformant: that
is, a common reduct should exist for them. A common reduct for types T1, T2 is such reduct RT1

of T1

that there exists a reduct RT2
of T2 such that RT2

is a refinement of RT1
. For reusability decision the most

common reduct of two types (the application model type and the component type) is the main target.
The composition operations (meet, join) of the algebra of type specifications are based on the notion of the

most common reduct. It is important that though in the algebra we assume manipulation of the specifications
of the semi-formal canonical object model, the mapping of such specifications into the formal notation is

3It is said that component (or a type) A refines component (or type) B if A can be used instead of B so that the user of B
will not notice such substitution.

http://www.ipi.ac.ru/synthesis/student/dot/references/FORMCHPTdot.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/zedbook.pdf
http://web.archive.org/web/20071126025422/vl.zuser.org/
http://www.ipi.ac.ru/synthesis/student/dot/references/Object-Z.pdf
http://en.wikipedia.org/wiki/Jean-Raymond_Abrial
http://www.ipi.ac.ru/synthesis/student/dot/references/FORMCHPTdot.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/B-Method.pdf
http://web.archive.org/web/20070706210218/vl.fmnet.info/b/
http://www.ipi.ac.ru/synthesis/student/dot/references/DOT13Bformfoic.ps
http://www.ipi.ac.ru/synthesis/student/dot/references/p1811-liskov.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/p1811-liskov.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/FORMCHPTdot.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/DOT13Bformfoic.ps


defined. This makes verifiable the results of the algebraic operations. Such approach makes possible to keep
a balance between non-tractability of taking a common reduct for two types and a possibility to verify each
step in the process of development (if required).

Definition of type algebra with examples showing AMN usage is provided in Calculus
How type algebra operations are used for determining the resulting type of a query (formulae) is defined

in the Type Inferencing paper

4 Canonical model

For the object modeling the course shows how a ”canonical” object model may look like. This model (the
SYNTHESIS language) is used for uniform representation of various object and data models (including
semistructured data models) in one paradigm. The canonical model serves as the common language, ”Es-
peranto”, for adequate uniform expression of semantics of various information models surrounding us. In
particular, this model incorporates various widely used constructs in the current object models. The model
is based on important notions of algebra of object type specifications used to compose new types or infer
them during the object algebra formulae evaluation.

To give the canonical model exact meaning, a mapping of this object model into the B AMN notation has
been constructed. This mapping provides precise meaning for the language. Thus, we get the semi-formal
object model and its formal counterpart that we can use together as a common paradigm for:

1. uniform representation of various object models;

2. uniform specification of pre-existing components;

3. different models used on the phase of analysis of the information systems.

Such canonical model provides capabilities of consistency check of specifications on different phases of
the information system development. But what is more important is that the concept of refinement of
the specifications relying on the pre-existing components becomes inherent in the model. This property
can be fruitfully used on various phases of the process of the IS design. In particular, the specifications
of components of existing software or legacy system descriptions can be extracted and transformed into a
collection of homogeneous and equivalent specifications for further reuse at the design phase.

An introduction into the SYNTHESIS language is defined in the course material Canonical object model
for semantic interoperation reasoning.

Description of the SYNTHESIS language is provided in a book on the SYNTHESIS language.

5 Ontological modeling

5.1 General considerations

Application semantics of components we consider separately in frame of the ontological approach. Ontological
definitions provide a conceptual framework for talking about an application domain and an implementation
framework for problem solving. Ontology is treated as a well organized collection of concept definitions.
Concepts are composite descriptions of individuals or types defining their attributes, concept interrelation-
ships and concept “micro-theories” including rules (constraints) and functions. Semi-formal and formal
(model-based) specifications for concepts are provided. We base the ontological model on the canonical
object model.

5.2 Models (languages) for definitions of ontologies

Various ontological models have been developed so far to provide for ontological modeling in various appli-
cations of IT.

Here three ontological models will be presented.

http://synthesis.ipi.ac.ru/synthesis/publications/cscalc/cscalc.ps/
http://www.ipi.ac.ru/synthesis/student/dot/references/LAKADB95.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/CANOCHP1dot.pdf
http://synthesis.ipi.ac.ru/synthesis/publications/07synthesis/07synthesis.pdf


The first one is based on verbal definitions of the application domain concepts expressed in a natural
language. The ideas and examples of such not formal way of concept definitions are considered in sections
1,3 and 4 of the course material on Ontological modeling and in Ontomodeling presentation.

The second one, ONTOLINGUA model (developed at the Stanford University), is based on the full first
order logic (FOL). An introduction to ONTOLINGUA is provided in sections 2.1 and 2.2 of the course
material on ONTOLINGUA.

The third one, Web Ontology Language (OWL) developed by W3C for the Semantic Web is based on the
description logic being a tractable subset of FOL. Description of OWL can be found elsewhere, e.g., in the
W3C documents OWL Overview, OWL Reference, OWL Semantics, in Wikipedia Web Ontology Language,
etc. Role of OWL and ontologies in Semantic Web is discussed in Ontologies and Semantic Web

5.3 Methodology for ontology integration, canonical ontological model

To work with ontologies of different resources a unified representation of ontologies is required. It is provided
by a canonical ontological model developed so that the ontological model (language) of any resource could
serve as its refinement. After analysis of various ontological models the kernel of canonical ontological model
has been identified as a subset of the SYNTHESIS language mentioned above. This subset includes:

• facilities for definition of concepts as abstract data types (ADT);

• type invariants expressing concept constraints;

• generic ontological metaclasses, instances of which are ADTs defining concepts;

• verbal definitions of concepts applying metaframes annotating types expressing concepts.

An introduction into the ONTOLINGUA model and the ideas of mapping of the ONTOLINGUA into
the SYNTHESIS can be found in the second section of the course material Ontological modeling as well as
in Ontomodeling presentation.

The OWL DL ontological model has been mapped into the ontological canonical model and the respective
definition of the canonical model kernel extension has been defined. Details are presented in Reversible
ontological model mapping paper.

For each of the component specification suspected to be relevant for the application the reconciliation
of its ontological context with the application domain ontological context should be made. Technically it
means construction of the extended ontological specifications establishing the component/application names
and concepts relationship. The basic idea of the step is to find for the component names proper synonym
or hypernym associations in the application domain ontological specifications. The relationships between
concepts are established on the basis of subtyping association that can be justified using the refinement
technique.

An approach for the resource and application contexts reconciliation is presented as follows.
Issues of ontological identification of relevant specifications for semantic context integration of hetero-

geneous semistructured sources are discussed in the Intercontext correlation paper. Here metainformation
model is defined which includes uniform features for ontology, thesaurus and classifier modeling. Special
technique for integration and mapping of different ontologies in this model is defined. The method for
identification of specification element correlations in different contexts is considered.

An approach for ontologies reconciliation in terms of type refinement is presented in the Ontology rec-
onciliationpaper.

An approach for establishing semantic linking of an application model and of the resource specifications
is considered in Object specifications linking.

6 Component based compositional design

6.1 General considerations

The component-based information system design is organized around the object middleware concept provid-
ing for interoperability (like CORBA). We base the development process on a conventional object analysis

http://www.ipi.ac.ru/synthesis/student/dot/references/ONTOCHPTdot.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/DOT14Ontofoil.ps
http://www.ipi.ac.ru/synthesis/student/dot/references/ONTOCHPTdot.pdf
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-ref//
http://www.w3.org/TR/owl-semantics/
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://www.ipi.ac.ru/synthesis/student/dot/references/OntoSemWebHorrocks.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/ONTOCHPTdot.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/DOT14Ontofoil.ps
http://www.ipi.ac.ru/synthesis/student/dot/references/ReversibleOnto.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/ReversibleOnto.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/ontomod.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/rcdl04.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/rcdl04.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/relevance.pdf


and development methods. The requirement planning and analysis phases of the conventional process are
augmented with ontological specifications and complete specifications of type constraints and operations
in the canonical model. The design phase is completely reconsidered: this is the design with reuse of the
pre-existing components uniformly specified in the canonical model.

Application model specification for EIS includes definition of terminology and concepts of the subject
domain of the application. They are expressed by the respective dictionaries (thesauri) and ontological
definitions in the canonical model. Application definitions include also specifications of object classes cor-
responding to the application subject domain, specification of instance types of these classes and of their
methods defining behavior of the objects, specification of processes characteristic for the application. On
the early stages of design the specifications mentioned can be expressed by means of various specification
languages (e.g., by UML). However, it is assumed that finally such specifications (including ontological ones)
are mapped into the canonical model specifications having formal semantics. It is worth of remark that
application-driven specifications are formulated independently of specific pre-existing information resources.
The result of this specification activity fulfilled by a community interested in a specific EIS application con-
stitutes the application model specification created as the result of reaching a consensus in such community.
The application model specification activity is called the application model consolidation phase.

General approach for the application problems statement and solving consists in problem formulation
in terms of the application model specification and transformation of this formulation into a set of tasks
(queries) to the real information resources registered at the application. Such transformation in the database
theory is known as the view based query rewriting.

To discover component types (classes) and their fragments relevant for the concretization of an analysis
model we undertake an associative search of the component constituent names based on the ontological cor-
relation with the proper application names. Then we take into account interconcept associations interpreted
as subtyping relationships. As the result we get sets of specifications of probably relevant component types
and classes. Further we should select among probably relevant component types (classes) those that really
may be used for the concretization of the application domain type (class). For reuse a model of composite
object integrating data and behaviour from various resources is applied. The data and/or behaviour residing
at each resource is regarding as a fragment of a composite object. Reducts (projections of type specifica-
tions) are considered as patterns of reuse and composition. In design, specifications of the concretization
types (classes) are constructed as the mediating definitions above the reusable reducts of the component
types involved. Correctness of the results of design can be verified using formal facilities of the canonical
model. The integrated presentation in the context of the single, object paradigm is unique in filling the
gap between the existing object analysis and design methods, the technical interoperation architectures and
methodologies for specification refinement and reuse of pre-existing components. The development method
of semantically interoperable information systems serves as a glue between these techniques.

6.2 Resource Identification and Registration

Identificatio (discovery) and registration of resources to be re-used for the IS implementation is a process
that includes decomposition of an application model specifications into consistent fragments, search among
specifications of relevant resources of such types (or their reducts) that could be used as candidates for
refining by them of the application model specification types, construction of expressions defining resource
classes as a composition of the application model classes. For such manipulation a specification composition
calculus (type algebra) is used. A principle of type specification decomposition into a set of specification
reducts serving as the basic units of reuse and composition has been declared. An operation of identification
of the most common reduct of resource type and application model type specifications has been introduced.
Type lattice and type algebra have also been defined. Important point in this scheme consists in a provision
of the type refinement proof applying logical model of the application and resource type specifications in
AMN. The compositional calculus emphasizes complete type specifications and expressiveness sacrificing
tractability in complex cases. Such decision is motivated by orientation of the modeling facilities on type
refinement and composition. The benefits we get include rigorous way of identification of common fragments
of resource and application model type specifications leading to justifiable mapping of resource type into
application model type.



How a concretization of a type of the application model by a component type can be built applying
formal proof in the AMN is defined in the Component-based design paper.

Similarly a problem of concretization with the emphasis on semantic reconciliation of resource types to
satisfy the application model is introduced in Concretization construction paper.

A methodology for applying of the canonical model and the AMN for the automation of refinement proof
in the process of component reuse is considered in the Automation of Verification paper.

A process of registration of heterogeneous information resources in an application model is based on
GLAV that combines two approaches - Local As View (LAV) and Global As View (GAV). According to
LAV the specifications of resources being registered are considered as materialized views over virtual classes
of an application model. GAV views provide for reconciliation of various conflicts between resource and
application model specifications and provide rules for transformation of a query results from resource into
the application model representation. Such registration technique provides for stability of IS application
specification during any modifications of specific resources and of their actual presence (removing, addition
new ones, etc.) as well as for scalability of applications w.r.t. the number of resources registered in them.

Identification of resources relevant to an application (that precedes the registration) is based on three
models: metadata model, characterizing resource capabilities represented in external registries (basic ideas for
such registries are provided in CORBA naming and trading services), canonical ontological model, providing
for definition of application domain concepts, and canonical model providing for definition of structure and
behavior of application and resource objects. Reasoning in canonical models is based on the semantics of the
canonical model and facilities for proof of refinement. Reasoning in the metadata model is a heuristic one
based on nonfunctional requirements to the resources needed in application (similarly to CORBA trading).
For the design, the application model and resources specifications are given uniformly in canonical model,
though in process of design a transformation into such model from another specification language (e.g., from
UML) might be required.

Complicated problem of registration consists in reconciliation of contexts of an EIS application and
specific resources. Ontological definitions annotate elements of application model specification and of resource
specifications given in a form of types, classes, processes. A similarity of concepts is established in two steps:
first, by means of verbal ontologies, and then by establishing refinement relationship of concepts as abstract
data types. Thus the conformity of the concepts is verified. Depending on complexity of specifications
such verification can be provided automatically or interactively. In the simple cases the verification can be
reduced to justifying of concept subsumption in description logics applying practically such systems as FaCT
or Pellet.

The techniques listed are used as a basis for identification and registration of information resources in
the application model. In this process ontological specifications are used for identification of application
model classes semantically relevant to a resource class. The maximal subset of the application model class
specification semantically relevant to a resource class is identified as the most common fragment (reduct) of
specifications of respective instance types given for these classes. Concretizing types reconciling the conflicts
(of values, structures, behaviors) are defined so that an instance type of the application specification class
would be refined by an instance type of the resource class. The main registration result is a GLAV expression
defining how a resource class is determined as a composition of the application model classes. In process of
resources evolution a specification of the application model remains stable, only such expressions need to be
modified. An instrument for supporting techniques of registration of resources in an application specification
should include:

• facilities identifying relevant information resources by metadata;

• facilities for reaching consensus of ontological contexts of information resources being registered and
of the application model;

• facilities for automation of the heterogeneous information resources registration in the application
model based on the GLAV approach;

• metainformation repository storing specifications of application models, information resources and the
results of registration.

http://www.ipi.ac.ru/synthesis/student/dot/references/CBSDPAP.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/SEVENREP.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/VerificationAutomation.pdf


An approach for heterogeneous resources registration at the application model is described in the Re-
souce registration, in the Compositional approach, in Compositional approach in Russian papers or in the
dissertation on component-based design.

6.3 Compositional design

The information system design is a process of systematic transformation of specifications. In the component-
based development a transformation from the application model to the design model consists in constructing
of a composition of relevant fragments of pre-existing components to be included into a design specification
that should finally serve as a concretization of the application model. The component-based development in
the interoperable environment imposes a strict demand on semantic interoperability of components as the
basis for such compositions. To cope with such strict demands, we should provide complete specifications in
a notation suitable for their manageable and justifiable transformations.

Type specifications and their reducts are chosen as the basic units of specification manipulation. For their
manipulation, the algebra of type specifications is introduced. The algebra includes operations of reduct,
meet, join, product of type specifications. These operations are used to produce the specifications of the
respective compositions of their operands. The reduct of a type is chosen as the minimal unit for reuse,
manipulation and transformation of type specifications.

Reducts of the component type specifications can be used as minimal fragments potentially reusable for
the respective reducts of the analysis model types. The identification of the fact of type reducts reusability
is the basic concern of the design. For that the type specifications should be conformant: that is, a common
reduct should exist for them. A common reduct for types T1, T2 is such reduct RT1

of T1 that there exists a
reduct RT2 of T2 such that RT2 is a refinement of RT1 . For reusability decision the most common reduct of
two types (the analysis model type and the component type) is the main target.

The composition operations (meet, join) of the algebra of type specifications are based on the notion of
the most common reduct. It is important that though in the algebra a manipulation of the specifications
expressed in the semi-formal canonical object model is assumed, the mapping of such specifications into the
formal notation is defined. This makes the results of the algebraic operations verifiable. Such approach
makes possible to keep a balance between non-tractability of taking a common reduct for two types and a
possibility to verify each step in the process of development (if required).

A semi-formal canonical object model for all phases of the design process is applied. The semantics and
notation of this model is defined. Object-oriented nature of the model makes possible to establish a mapping
between the canonical model and existing notations in object technology (e.g., UML). This property is
important for incorporation of the graphical notation (UML-based) into the development process.

After establishing interconcept correlation and ontological concept integration between different appli-
cation domains, the process of semantically interoperable information systems design starts. The heuristic
procedure for the most common reduct construction for a pair of ontologically relevant type specifications is
defined. The process of design is based on this procedure driven by ontologically relevant pairs of attribute
types. The common reducts discovered by the procedure are used in type algebra expressions and object cal-
culus formulae to define new types that should be constructed in the design phase. The process is illustrated
by an example showing various steps of the design including verification of the results in B AMN.

A framework for evolving from technical to semantic interoperability design is proposed in Complementary
architecture paper.

A process of semantically interoperable information systems design is described in the course material
Design, Design presentation, in the paper devoted to Component-based development. as well as in the
Compositional development report or in dissertation on component-based IS construction.

7 Web Services compositions

How the approach for semantically interoperable information systems development with reuse applied in
frame of the object middleware (CORBA) could be extended to the Web service framework is considered in
the Extension paper as well as in the Composition of Web services paper.

http://synthesis.ipi.ac.ru/synthesis/publications/registration/registration.ps
http://synthesis.ipi.ac.ru/synthesis/publications/registration/registration.ps
http://synthesis.ipi.ac.ru/synthesis/publications/compdev/compdev.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/compdev.pdf
http://synthesis.ipi.ac.ru/synthesis/publications/briukhovdiss/briukhovdiss.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/CORBA.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/CORBA.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/DESICHPTdot.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/DOT15.ppt
http://www.ipi.ac.ru/synthesis/student/dot/references/compdev.pdf
http://synthesis.ipi.ac.ru/synthesis/publications/compdev/compdev.ps
http://synthesis.ipi.ac.ru/synthesis/publications/briukhovdiss/briukhovdiss.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/extwebservice.pdf
http://www.ipi.ac.ru/synthesis/student/dot/references/adbis2006.pdf

	Motivation
	Formal models and methods
	An introduction into design based on formal models
	Models and languages

	Object types
	Subtyping: strict definition
	Type algebra (calculus)

	Canonical model
	Ontological modeling
	General considerations
	Models (languages) for definitions of ontologies
	Methodology for ontology integration, canonical ontological model

	Component based compositional design
	General considerations
	Resource Identification and Registration
	Compositional design

	Web Services compositions

