Задачи для досрочного письменного экзамена по курсу «Дискретные структуры»

- 1. Выясните, являются ли следующие формулы логики высказываний тавтологиями (т.е. тождественно истинными формулами):
 - a) $\neg p \rightarrow p$
 - b) $(p \rightarrow (r \rightarrow q)) \rightarrow ((p \rightarrow r) \rightarrow (p \rightarrow q))$
 - c) $\neg \neg p \rightarrow p$
- 2. Определите, верны ли следующие утверждения для любых множеств А, В и С:
 - a) $(A \setminus B) \setminus C = A \setminus (B \cap C)$
 - b) $(A \setminus B) \cap (B \setminus A) = (A \cap B) \setminus (A \cup B)$
- 3. Напишите ДНФ (дизъюнктивную нормальную форму) булевой функции, заданной следующей таблицей, а затем постройте схему из элементов AND («И»), OR («ИЛИ»), NOT («НЕ»), реализующую эту функцию:

Аргументы функции (Входы схемы)			Значение функции (Выход схемы)
x1	x2	х3	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

- 4. В небольшой фирме восемь человек работают на производстве, пятеро в отделе сбыта, и трое в бухгалтерии. Для обсуждения новой продукции было решено пригласить на совещание шестерых сотрудников. Сколькими способами это можно сделать, если на совещании необходимы представители каждого их трех перечисленных отделов (т.е. от каждого должен присутствовать по крайней мере один сотрудник).
- 5. Для натурального n определим множество пар чисел $D_n = [(r,s) \in \mathbb{R} \times \mathbb{R} | r^2 + s^2 \le n^2]$, являющееся подмножеством декартова произведения множества действительных чисел \mathbb{R} на себя (тоесть в D_n входят те и только те пары (r,s), для которых сумма квадратов $r^2 + s^2$ не больше n^2). Приведите примеры представителей следующих множеств (в качестве универсального множества предполагается множество $\mathbb{R} \times \mathbb{R}$): а) $D_3 \cap D_5$; b) \overline{D}_3 .
- 6. Является ли определяемое ниже отношение R_1 отношением эквивалентности? Если да, опишите, что из себя представляют его классы эквивалентности? Если нет, какие из свойств отношения эквивалентности нарушаются (симметричность, рефлексивность, транзитивность)?

для любых целых m u n onpedenum $(m,n) \in R_1 \iff m \cdot n$ нечетное.

- 7. Пусть L множество всех прямых на плоскости. Являются ли на этом множестве отношениями эквивалентности отношения:
 - а) отношение параллельности двух прямых;
 - b) отношение перпендикулярности двух прямых?
- 8. Сколькими способами можно выбрать из полной колоды (52 карты) 10 карт, чтобы среди них было ровно три туза?
- 9. Дан связный граф. В графе 5 вершин, которые имеют степени 3, 3, 5, 5, 8.
 - а) Может ли существовать граф с таким набором степеней вершин?
 - b) Если такой граф существует, то существует ли в нем эйлеров контур?
 - с) Если эйлеров контур существует, то какова его длина (тоесть сколько ребер графа он содержит)?
- 10. В некоторой стране 50 городов, причем каждый соединен с каждым дорогой. Какое наибольшее число дорог можно закрыть на ремонт так, чтобы из каждого города можно было по-прежнему проехать в каждый?
- 11. Дан полный двудольный граф $K_{2,3}$. Существует ли в нем гамильтонов контур? Объясните свой ответ.

На предложенные задачи необходимо дать развернутый письменный ответ, поясняющий ход решения. Работы необходимо сдать до 30 апреля включительно в учебную часть либо прислать в электронном виде по адресу roman.rogov@gmail.com (срок может быть продлен – просьба следить за объявлениями учебной части).

Критерии оценки:

Оценка «отлично» ставится за девять решенных задач.

Оценка «хорошо» ставится за семь решенных задач.

Оценка «удовлетворительно» ставится за четыре решенные задачи.