МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

УТВЕРЖДЕНО
Ученым советом факультета
вычислительной математики и кибернетики
Протокол № 5 от 20.06.2019

Декан факультета

вычислительной математики и кибернетики академик Соколов И.А.

201111

Программа реализации блока «ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ»

Направление подготовки:

01.04.02 Прикладная математика и информатика Направленность подготовки (магистерские программы):

- "Вычислительные технологии и моделирование"
- "Дискретные структуры и алгоритмы"
- "Дискретные управляющие системы и их приложения"
- "Интеллектуальные системы"
- "Интеллектуальный анализ больших данных"
- "Информационная безопасность компьютерных систем"
- "Исследование операций и актуарная математика"
- "Квантовая информатика"
- "Компиляторные технологии"
- "Компьютерное зрение, графика и обработка изображений"
- "Компьютерные методы в математической физике, обратных задачах и обработке изображений"
- "Логические и комбинаторные методы анализа данных"
- "Математические методы моделирования и методы оптимизации управляемых процессов"
- "Математические методы системного анализа, динамики и управления"
- "Распределенные системы и компьютерные сети"
- "Современные методы математического моделирования"
- "Спектральная теория дифференциальных операторов и управление распределенными системами"
- "Статистический анализ и прогнозирование рисков"
- "Суперкомпьютерные системы и приложения"
- "Теория нелинейных динамических систем: анализ, синтез и управление"
- "Технологии программирования"
- "Численные методы и математическое моделирование"

Уровень подготовки: магистратура

Квалификация выпускника: МАГИСТР

Форма обучения: очная

Москва 2019 г.

- 1. Наименование: Государственная итоговая аттестация
- 2. Уровень высшего образования: магистратура
- 3. Направление подготовки: 01.04.02 Прикладная математика и информатика

Направленность (магистерские программы):

в рамках направления подготовки 01.04.02 Прикладная математика и информатика реализуется для следующих направленностей (магистерских программ):

- "Вычислительные технологии и моделирование"
- "Дискретные структуры и алгоритмы"
- "Дискретные управляющие системы и их приложения"
- "Интеллектуальные системы"
- "Интеллектуальный анализ больших данных"
- "Информационная безопасность компьютерных систем"
- "Исследование операций и актуарная математика"
- "Квантовая информатика"
- "Компиляторные технологии"
- "Компьютерное зрение, графика и обработка изображений"
- "Компьютерные методы в математической физике, обратных задачах и обработке изображений"
- "Логические и комбинаторные методы анализа данных"
- "Математические методы моделирования и методы оптимизации управляемых процессов"
- "Математические методы системного анализа, динамики и управления"
- "Распределенные системы и компьютерные сети"
- "Современные методы математического моделирования"
- "Спектральная теория дифференциальных операторов и управление распределенными системами"
- "Статистический анализ и прогнозирование рисков"
- "Суперкомпьютерные системы и приложения"
- "Теория нелинейных динамических систем: анализ, синтез и управление"
- "Технологии программирования"
- "Численные методы и математическое моделирование"
- **4. Место** дисциплины в структуре **ООП**: базовая часть ОПОП, блок 4 «Государственная итоговая аттестация, 4 семестр (очная форма обучения).
- 5. Перечень компетенций, которыми должен овладеть обучающийся в результате освоения образовательной программы:

Выпускник, освоивший программу магистратуры должен обладать следующими универсальными компетенциями:

УК-1. Способен формулировать научно обоснованные гипотезы, создавать теоретические модели явлений и процессов, применять методологию научного познания в профессиональной деятельности.

- УК-2. Способен использовать философские категории и концепции при решении социальных и профессиональных задач.
- УК-3. Способен разрабатывать и реализовывать проекты, предусматривая и учитывая проблемные ситуации и риски на всех этапах выполнения проекта.
- УК-4. Способен организовывать и осуществлять руководство деятельностью коллектива (группы) на основе социального и профессионального взаимодействия, вырабатывая и реализуя стратегию совместного достижения поставленной цели.
- УК-5. Способен осуществлять письменную и устную коммуникацию на государственном языке Российской Федерации в процессе академического и профессионального взаимодействия с учетом культурного контекста общения на основе современных коммуникативных технологий.
- УК-6. Способен осуществлять письменную и устную коммуникацию на иностранном языке (иностранных языках) в процессе межкультурного взаимодействия в академической и профессиональной сферах на основе современных коммуникативных технологий.
- УК-7. Способен анализировать и учитывать разнообразие культур в процессе межкультурного взаимодействия.
- УК-8. Способен определять и реализовывать приоритеты личностного и профессионального развития на основе самооценки.

Выпускник, освоивший программу магистратуры должен обладать следующими общепрофессиональными компетенциями:

- ОПК-1. Способен формулировать и решать актуальные задачи в области фундаментальной и прикладной математики.
- ОПК-2. Способен совершенствовать и реализовывать новые математические и компьютерные методы решения прикладных задач.
- ОПК-3. Способен создавать и анализировать математические модели профессиональных задач, учитывать ограничения и границы применимости моделей, интерпретировать полученные математические результаты.
- ОПК-4. Способен комбинировать и адаптировать современные информационнокоммуникационные технологии для решения задач в области профессиональной деятельности с учетом требований информационной безопасности.
- ОПК-5. Способен представлять результаты профессиональной деятельности в соответствии с нормами и правилами, принятыми в профессиональном сообществе.

Профессиональные компетенции выпускника, освоившего программу магистратуры

Научно-исследовательский тип задач профессиональной деятельности:

- ПК-1. Способен в рамках задачи, поставленной специалистом более высокой квалификации, определять теоретическую основу и методологию исследования, разрабатывать план исследования в области прикладной математики и информатики;
- ПК-2. Способен в рамках задачи, поставленной специалистом более высокой квалификации, проводить научные исследования и (или) осуществлять разработки в области прикладной математики и информатики с получением научного и (или) научнопрактического результата;
- ПК-3. Способен готовить отдельные документы, связанные с проводимой научно-исследовательской работой.

Производственно-технологический тип задач профессиональной деятельности:

- ПК-4. Способен модифицировать и применять актуальные алгоритмы компьютерной математики, а также реализовывать их в современных программных комплексах.
 - ПК-5. Способен разрабатывать системное и прикладное программное обеспечение.
- ПК-6. Способен разрабатывать и применять современные алгоритмические и программные решения в области информационно-коммуникационных технологий.

6. Объем в зачетных единицах с указанием количества академических или астрономических часов, соотнесенные с планируемыми результатами освоения

образовательной программы:

Объем государственной итоговой аттестации составляет 9 зачетных единиц, в том числе 6 зачетные единицы - подготовка и защита выпускной квалификационной работы, 3 зачетные единицы - подготовка и сдача государственного экзамена.

7. Входные требования для прохождения итоговой государственной аттестации:

к государственной итоговой аттестации допускается обучающийся, не имеющий академической задолженности и в полном объеме выполнивший учебный план или индивидуальный учебный план по соответствующей образовательной программе высшего образования.

8. Содержание государственной итоговой аттестации:

государственная итоговая аттестация обучающихся организаций проводится в форме: государственного междисциплинарного экзамена по магистерской программе, а также защиты выпускной квалификационной работы.

А. Программа государственного междисциплинарного экзамена:

Государственный междисциплинарный экзамен носит комплексный характер, проводится по одной или нескольким дисциплинами (или) модулям образовательной программы, результаты освоения которых имеют определяющее значение для профессиональной деятельности выпускников.

Б. Программа выпускной квалификационной работы:

Выпускная квалификационная работа представляет собой выполненную обучающимся письменную работу, демонстрирующую уровень подготовленности выпускника к самостоятельной профессиональной деятельности. Защита выпускной квалификационной работы представляет собой выступление обучающегося с устным докладом перед государственной экзаменационной комиссией, об основных результатах подготовленной выпускной квалификационной работы.

9. Учебно-методические материалы для самостоятельной работы обучающегося к подготовке к государственной итоговой аттестации:

А. Подготовка к государственному междисциплинарному экзамену:

Государственный междисциплинарный экзамен проводится в устной форме. В ходе государственного междисциплинарного экзамена обучающийся должен ответить на поставленные в экзаменационном билете вопросы, разработанные в соответствии с программой проведения государственного междисциплинарного экзамена по соответствующей магистерской программе (см. Приложение).

Б. Подготовка выпускной-квалификационной работы (магистерской диссертации):

Требования к оформлению выпускной квалификационной работы:

Результатом научно-исследовательской деятельности обучающегося является выпускная квалификационная работа, выполненная в соответствии с требованиями «Положения о магистерской диссертации факультета ВМК МГУ имени М.В. Ломоносова» (утверждено на заседании Ученого совета ВМК МГУ имени М.В. Ломоносова 30 ноября 2016 г.).

Типовые вопросы к защите выпускной квалификационной работы:

- Обоснуйте актуальность темы выпускной квалификационной работы.
- В чем состоит практическая значимость, выполненной выпускной квалификационной

работы?

- В чем новизна результатов работы?
- Сформулируйте цели и задачи выпускной квалификационной работы.

10. Фонд оценочных средств государственной итоговой аттестации:

Критерии и процедуры оценивания обучающегося на государственной итоговой аттестации:

А. Критерии оценивания на государственном междисциплинарном экзамене:

Для оценки готовности выпускника к видам профессиональной деятельности и степени сформированности компетенций государственная экзаменационная комиссия заслушивает устный ответ обучающегося на вопросы, представленные в экзаменационном билете.

Оценка «отлично» ставится если:

- ответы на поставленные вопросы в билете излагаются логично, последовательно и не требуют дополнительных пояснений. Делаются обоснованные выводы;
- демонстрируются глубокие знания в области фундаментальных основ прикладной математики и информатики;
- ответ формулируется развернуто и уверенно, содержит четкие формулировки определений и теорем.

Оценка «хорошо» ставится, если:

- ответы на поставленные вопросы излагаются систематизировано и последовательно;
- материал излагается уверенно;
- экзаменуемый обнаруживает твёрдое знание программного материала;
- ответ демонстрирует способность магистранта применять знание теории к решению задач профессионального характера.

Оценка «удовлетворительно» ставится, если:

- -допускаются нарушения в последовательности изложения;
- -демонстрируется поверхностное знание вопроса;
- -имеются затруднения с выводами;

Оценка «неудовлетворительно» ставится, если:

материал излагается непоследовательно, сбивчиво, не представляет определенной системы знаний;

обучающийся не понимает сущности процессов и явлений.

Б. Критерии оценивания выпускной квалификационной работы:

Для оценки готовности выпускника к видам профессиональной деятельности и степени сформированности компетенций, государственная экзаменационная комиссия заслушивает выступление обучающегося о подготовленной выпускной квалификационной работе.

- оценка «отлично» выставляется за глубокое раскрытие темы, качественное оформление работы, содержательность доклада и презентации;
- оценка «хорошо» выставляется при соответствии вышеперечисленным критериям, но при наличии в содержании работы и её оформлении небольших недочётов или недостатков в представлении результатов к защите;
- оценка «удовлетворительно» выставляется за неполное раскрытие темы, выводов и предложений, носящих общий характер, отсутствие наглядного представления работы и затруднения при ответах на вопросы;
- оценка «неудовлетворительно» выставляется за слабое и неполное раскрытие темы, несамостоятельность изложения материала, выводы и предложения, носящие общий характер, отсутствие наглядного представления работы и ответов на вопросы.

Оценочные средства государственной итоговой аттестации

Показатели достижения результатов обучения при прохождении государственной итоговой аттестации, обеспечивающие определение соответствия (или несоответствия) индивидуальных результатов государственной итоговой аттестации студента поставленным целям и задачам (основным показателям оценки результатов итоговой аттестации) и компетенциям, приведены в таблице.

I/	Наименование компетенции	Сформированные компетенции и показатели оценки результатов	
Код		Государственный экзамен	Подготовка и защита ВКР
УК-1	Способен формулировать научно обоснованные гипотезы, создавать теоретические модели явлений и процессов, применять методологию научного познания в профессиональной деятельности.		Подготовка и защита ВКР, раздел в ВКР
УК-2	Способен использовать философские категории и концепции при решении социальных и профессиональных задач.		Подготовка и защита ВКР, раздел в ВКР
УК-3	Способен разрабатывать и реализовывать проекты, предусматривая и учитывая проблемные ситуации и риски на всех этапах выполнения проекта.		Подготовка и защита ВКР, раздел в ВКР
УК-4	Способен организовывать и осуществлять руководство деятельностью коллектива (группы) на основе социального и профессионального взаимодействия, вырабатывая и реализуя стратегию совместного достижения поставленной цели.		Подготовка и защита ВКР, раздел в ВКР
УК-5	Способен осуществлять письменную и устную коммуникацию на государственном языке Российской Федерации в процессе академического и профессионального взаимодействия с учетом культурного контекста общения на основе современных коммуникативных технологий.		Подготовка и защита ВКР, раздел в ВКР
УК-6	Способен осуществлять письменную и устную коммуникацию на иностранном языке (иностранных языках) в процессе межкультурного взаимодействия в академической и профессиональной сферах на основе современных коммуникативных технологий.		Подготовка и защита ВКР, раздел в ВКР
УК-7	Способен анализировать и учитывать разнообразие культур в процессе межкультурного взаимодействия.		Подготовка и защита ВКР, раздел в ВКР
УК-8	Способен определять и реализовывать приоритеты личностного и профессионального развития на основе самооценки.		Подготовка и защита ВКР, раздел в ВКР
ОПК-1	Способен формулировать и решать актуальные задачи в области фундаментальной	Экзаменационный билет	Подготовка и защита ВКР,

	и прикладной математики.		раздел в ВКР
ОПК-2	Способен совершенствовать и реализовывать	Экзаменационный	1
OHK-2	новые математические и компьютерные	билет	защита ВКР,
	методы решения прикладных задач.		раздел в ВКР
ОПК-3	Способен создавать и анализировать		Подготовка и
	математические модели профессиональных		защита ВКР,
	задач, учитывать ограничения и границы		раздел в ВКР
	применимости моделей, интерпретировать		риздел в вта
	полученные математические результаты.		
ОПК-4	Способен комбинировать и адаптировать		Подготовка и
	современные информационно-		защита ВКР,
	коммуникационные технологии для решения		раздел в ВКР
	задач в области профессиональной		1 , ,
	деятельности с учетом требований		
	информационной безопасности.		
ОПК-5	Способен представлять результаты		Подготовка и
	профессиональной деятельности в		защита ВКР,
	соответствии с нормами и правилами,		раздел в ВКР
	принятыми в профессиональном сообществе.		
ПК-1	Способен в рамках задачи, поставленной	Экзаменационный	Подготовка и
	специалистом более высокой квалификации,	билет	защита ВКР,
	определять теоретическую основу и		раздел в ВКР
	методологию исследования, разрабатывать		
	план исследования в области прикладной		
	математики и информатики;		
ПК-2	Способен в рамках задачи, поставленной	Экзаменационный	
	специалистом более высокой квалификации,	билет	защита ВКР,
	проводить научные исследования и (или)		раздел в ВКР
	осуществлять разработки в области		
	прикладной математики и информатики с		
	получением научного и (или) научно-		
	практического результата;		
ПК-3	Способен готовить отдельные документы,	Экзаменационный	
	связанные с проводимой научно-	билет	защита ВКР,
	исследовательской работой.		раздел в ВКР
ПК-4	Способен модифицировать и применять	Экзаменационный	
	актуальные алгоритмы компьютерной	билет	защита ВКР,
	математики, а также реализовывать их в		раздел в ВКР
	современных программных комплексах.		
ПК-5	Способен разрабатывать системное и		Подготовка и
	прикладное программное обеспечение.		защита ВКР,
			раздел в ВКР
ПК-6	Способен разрабатывать и применять	Экзаменационный	Подготовка и
	1 1 1	билет	защита ВКР,
	решения в области информационно-		раздел в ВКР
	коммуникационных технологий.	I	İ

ПРОГРАММА ПРОВЕДЕНИЯ ГОСУДАРСТВЕННОГО МЕЖДИСЦИПЛИНАРНОГО ЭКЗАМЕНА ПО МАГИСТЕРСКИМ ПРОГРАММАМ

Магистерская программа "Вычислительные технологии и моделирование"

Обшая часть

- 1. Обобщенное решение задачи Дирихле для уравнения второго порядка эллиптического типа.
- 2. Метод Ритца приближенного решения эллиптического уравнения второго порядка.
- 3. Вариационная постановка задачи на собственные значения симметричного положительного операторного уравнения.
- 4. Метод Ритца в проблеме вычисления собственных значений задачи Дирихле.
- 5. Метод конечных элементов для обыкновенного дифференциального уравнения.
- 6. Метод конечных элементов для задачи об изгибе упругого бруса.
- 7. Матрица жесткости и матрица массы линейного конечного элемента.
- 8. Теорема о сходимости метода конечных элементов на линейных треугольниках в случае уравнения Пуассона.
- 9. Вывод уравнения Кортевега-де Фриза.
- 10. Групповой анализ обыкновенных дифференциальных уравнений первого и второго порядка.
- 11. Групповой анализ для уравнения теплопроводности.
- 12. Уравнение Бюргерса и его линеаризация.
- 13. Метод кусочно-постоянных аппроксимаций решения интегральных уравнений Фредгольма 2-го рода.
- 14. Метод конечных элементов решения интегральных уравнений Фредгольма 2-го рода.
- 15. Метод решения сингулярного интегрального уравнения с ядром Гильберта на основе квадратурных формул интерполяционного типа.
- 16. Численное решение интегральных уравнений Фредгольма 2-го рода в случае неоднозначной разрешимости соответствующего однородного уравнения.
- 17. Методы организации параллельных вычислений при суперкомпьютерном решении сеточных задач.

Специальная часть

- 18. Сопряженные, симметричные и самосопряженные операторы (случай неограниченных операторов)
- 19. Типы разрешимости операторных уравнений. Условия однозначной и плотной разрешимости.
- 20. Методы теории экстремальных задач.
- 21. Методы теории некорректных задач.
- 22. Методы общей теории итерационных процессов.
- 23. Функциональные зависимости, которые могут быть предложены для описания процесса увеличения численности биологических популяций.
- 24. Компартментные модели в биологии, определения и примеры.
- 25. Генетические алгоритмы моделирования.
- 26. Критерии выбора оптимальной модели из некоторого семейства при описании заданного множества данных наблюдений.
- 27. Простейшие модели на основе ОДУ и дифференциальных уравнений с запаздывающим аргументом, которые имеют осциллирующие решения.

- 28. Полулагранжев метод для численного решения одномерного уравнения переноса сущность, критерий устойчивости, достоинства и недостатки. Принципы построения варианта полулагранжева метода, сохраняющего массу переносимого вещества.
- 29. Линейные монотонные схемы для гиперболических уравнений. Теорема Годунова. Примеры линейных монотонных схем.
- 30. Нелинейные монотонные схемы для гиперболических уравнений. Пример построения. Схема Лакса-Вендроффа.
- 31. Нелинейная неустойчивость. (Уравнение Бюргерса) Пример неустойчивой схемы. Построение устойчивой разностной схемы для этого уравнения.
- 32. Постановка задач анализа данных: задачи регрессии, классификации. Основные типы данных. Обучение с учителем, обучение без учителя.
- 33. Линейная регрессия, логичестическая регрессия, метод опорных векторов, решающие деревья. Нейронные сети (определение)
- 34. Понятие переобучения в машинном обучении, смещение и дисперсия. Размерность Вапника-Червоненскиса. Теорема Вапника (без доказательства) и следствия из нее.
- 35. Метод циклической редукции как двухсеточный метод.
- 36. Метод вложенных рассечений.
- 37. Варианты метода секущих; метод Андерсона.

- 38. Михлин С.Г. Вариационные методы в математической физике. М.Наука, 1970.
- 39. Андреев В.Б. Лекции по методу конечных элементов. М.МАКС Пресс ,2015.
- 40. Ибрагимов Н.Х. Практический курс дифференциальных уравнений и математического моделирования. М. Физматлит, 2012.
- 41. Сетуха А.В. Численные методы в интегральных уравнениях и их приложения. М.АРГАМАК-МЕДИА, 2014.
- 42. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления СПб. БХВ-Петербург, 2002.
- 43. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А.Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов. М.: Издательство Московского университета, 2013.
- 44. Флетчер К. Вычислительные методы в динамике жидкостей. Пер. с англ. М.: Мир,
- 45. 1991 г., в 2 т.
- 46. Bishop C. M. Pattern. Recognition and Machine Learning. Springer, 2006. 738 p.
- 47. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2014. 739 p.
- 48. George, J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, New Jersey, 1981. --- 324pp.
- 49. S. Schaffer. A semicoarsening multigrid method for elliptic partial differential equations with highly discontinuous and anisotropic coefficients. SIAM J. Sci. Comput. 20(1): 228-242, 1998.
- 50. H.-R. Fang, Y. Saad. Two classes of multisecant methods for nonlinear acceleration. Numer. Lin. Alg. Appl. 16(3): 197--221, 2009. doi:10.1002/nla.617.

Магистерская программа "Дискретные структуры и алгоритмы"

- 51. Замкнутые классы алгебры логики. Теорема Поста о замкнутых классах алгебры логики. Структура доказательства теоремы Поста. Конечная порождаемость замкнутых классов. Решетка замкнутых классов. [1] (стр. 47-65)
- 52. Алгоритм распознавания полноты в k-значной логике. [2] (стр. 51-53)
- 53. Теорема Кузнецова о функциональной полноте. [2] (стр. 53-56)
- 54. Задача обобщенной выполнимости. Слабо положительные, слабо отрицательные, биюнктивные и мультиаффинные функции, их критерии и приведенные представления. Полиномиальные случаи задачи обобщенной выполнимости. [3] (стр. 28-30), [4] (стр. 2433)

- 55. Теорема Шефера о сложностной классификации задачи обобщенной выполнимости (без доказательства вспомогательных лемм). [3] (стр. 52-53), [4] (стр. 37-39)
- 56. Раскраски вершин графов, хроматическое число графа. Критерий двуцветности графа. Теорема Брукса о верхней оценке хроматического числа графа. [5] (стр. 235-243), [6] (стр. 359-361)
- 57. Раскраски ребер графов, хроматический индекс графа. Хроматический индекс двудольного графа. Теорема Визинга о верхней оценке хроматического индекса графа. [5] (стр. 248-252), [6] (стр. 451-457)
- 58. Числа Рамсея. Теоремы о верхней и нижней оценках чисел Рамсея. [6] (стр. 308-313)
- 59. Алгоритмы на графах, поиск в глубину и в ширину. Алгоритм поиска двусвязной компоненты графа. Алгоритм поиска фундаментального множества циклов графа. [5] (стр. 323-334), [7] (стр. 88-94, 98-105)
- 60. Основные методы построения новых кодов из известных: выкалывание, расширение, укорачивание, прямые суммы, (u|u+v)-конструкция. [8] (стр. 13-19)
- 61. Коды Хэмминга, Голея, Рида-Маллера и их свойства. [8] (стр. 29-36)
- 62. Вероятностные алгоритмы. Вероятностные алгоритмы проверки тождеств для матриц и для многочленов. Оценка вероятности ошибки. [9] (стр. 161-165, 184-188), [10] (стр. 129132, 149-154)
- 63. Квантовые вычисления. Определение квантового компьютера, квантовой схемы и квантовых вычислений. Квантовый алгоритм Гровера для задачи поиска, его сложность. [11] (стр. 48-54, 66-71, 54-56)
- 64. Нейронные сети. Представимость событий в нейронных сетях. [12] (стр. 9-21)
- 65. Модели самовоспроизведения на однородных структурах, теорема Мура. [12] (стр. 30-41)
- 66. Сети Петри. Моделирование конкурирующих параллельных процессов сетями Петри. Основные свойства сетей Петри. Покрывающее дерево сети Петри. Разрешимость проблем ограниченности, безопасности и покрытия для обыкновенных сетей Петри. Неразрешимость проблемы эквивалентности для обыкновенных сетей Петри. [13] (стр. 14-32)
- 67. Стандартные схемы программ. Проблема функциональной эквивалентности для стандартных схем программ. Неразрешимость проблемы функциональной эквивалентности. Логико-термальная эквивалентность стандартных схем программ. Разрешимость проблемы логико-термальной эквивалентности стандартных схем программ. [14] (стр. 67-83, 92-101)
- 68. Поколения архитектур компьютеров и парадигмы программирования. Архитектурные особенности современных микропроцессоров. Программно-аппаратная архитектура суперкомпьютеров Ломоносов и Blue Gene/P.
- 69. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 70. Методы организация параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 71. Архитектурные особенности графических процессоров, направленные на массивно-параллельные вычисления.
- 72. Методы эффективной организации параллельных вычислений на графических процессорах.

- 73. Марченков С.С. Основы теории булевых функций. М.: Физматлит, 2014.
- 74. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- 75. Creignou N., Khanna S., Sudan M. Complexity classifications of Boolean constraint satisfaction problems. 2001.
- 76. Горшков С.П., Тарасов А.В. Сложность решения систем булевых уравнений. М.: Курс, 2017.
- 77. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990.

- 78. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.
- 79. Липский В. Комбинаторика для программистов. М.: Мир, 1988.
- 80. Huffman W. C., Pless V. Fundamentals of error-correcting codes. Cambridge University Press, 2003.
- 81. Кузюрин Н.Н., Фомин С.А. Эффективные алгоритмы и сложность вычислений (авторское электронное издание, discopal.ispras.ru/img_auth.php/f/f4/Book-advanced-algorithms.pdf).
- 82. Кузюрин Н.Н., Фомин С.А. Эффективные алгоритмы и сложность вычислений: Учебное пособие. М.: МФТИ, 2007.
- 83. А. Китаев, А. Шень, М. Вялый. Классические и квантовые вычисления. М.: МЦМНО, ЧеРо, 1999.
- 84. Козлов В.Н. Дискретный подход к моделированию в естествознании и модели в биологии. М.: Изд-во Московского университета, НИВЦ МГУ, 1990.
- 85. Котов В.Е. Сети Петри. М.: Наука, 1984.
- 86. Котов В.Е., Сабельфельд В.К. Теория схем программ. М.: Наука, 1991.

Магистерская программа "Дискретные управляющие системы и их приложения"

- 87. Задача синтеза схем для произвольных и специальных функций алгебры логики (ФАЛ), связанные с ней понятия. Мощностной метод и получение с его помощью нижних асимптотических оценок высокой степени точности (АОВСТ) функций Шеннона для сложности схем из основных классов. [1,§1-2]
- 88. Универсальные системы (множества) $\Phi A \Pi$ и связанные с ними разложения произвольных $\Phi A \Pi$. Построение универсальных систем $\Phi A \Pi$ на основе селекторных разбиений переменных и оценки их сложности. [1,§3]
- 89. Синтез схем с помощью метода универсальных систем ФАЛ, особенности его применения в различных моделях дискретных управляющих систем. Верхние АОВСТ функций Шеннона для сложности схем из некоторых классов. [1,§4-6]
- 90. Задача синтеза легкотестируемых схем. Теорема Редди о единичных проверяющих тестах для схем из функциональных элементов в базисе Жегалкина при константных неисправностях на выходах элементов. [2] (стр. 101-102, 110-111, 113-116).
- 91. Последовательные схемы. Защёлки и триггеры. RS-триггер, D-защелка, D-триггер. Проектирование конечного автомата. [3] (стр. 109-114, 123-129) или [4] (стр. 270-284, 307-320)
- 92. Основы языка Verilog: модули, экземпляры (инстанциации) модулей, типы reg и wire, непрерывное присваивание, блок always, блокирующее и неблокирующее присваивания, операторы if и case, выражения языка, значения х и z. [5] (стр. 16-48, 84-87, 93-99)
- 93. Модель комбинационных логических сетей и основные структурные операции над ними: упрощение вершин, декомпозиция и подстановка вершин. Операция деления и совокупное ядро делителей. Основные способы нахождения общих делителей и применение их для оптимизации комбинационных логических сетей. [6] (стр. 422-432, 456-459) или [7] (стр. 343379)
- 94. Постановка задачи привязки логической схемы к библиотеке и основные этапы её решения: приведение и разбиение схемы, поиск соответствий и оптимального покрытия. Алгоритм привязки логической схемы к библиотеке на основе динамического программирования. [6]
- 95. (стр. 505-513) или [7] (стр. 504-529)
- 96. Синхронные логические схемы и их связь со схемами из функциональных элементов и элементов задержки. Алгоритмы временной оптимизации синхронных логических сетей (Retiming). [7] (стр. 458-474)
- 97. Основные цели разбиения интегральной схемы, оценка качества разбиения и связь с

- теорией графов. Алгоритмы разбиения графов и гиперграфов: алгоритм Кернигана-Лина и его расширения, алгоритм Федуччи-Маттеуса (Fiduccia-Mattheyses). [8] (стр. 33-46)
- 98. Задача глобального размещения элементов интегральной схемы и основные метрики оценки качества размещения. Основные подходы к размещению: геометрические методы и подходы, основанные на декомпозиции (min-cut placement), аналитические подходы (размещение как задача квадратичного программирования), стохастические подходы (моделирование отжига). [8] (стр. 95-119)
- 99. Задача трассировки соединений. Классификация алгоритмов трассировки. Представление областей трассировки. Задача глобальной трассировки. МST и SMT деревья. Последовательный алгоритм построения дерева Штейнера. [8] (стр. 131-154)
- 100. Стадии выполнения инструкции MIPS. Конвейер. Особенности проектирования инструкций процессора для конвейерного выполнения. Конфликты в конвейере: структурные, по данным, по управлению. Производительность конвейера. [9] (стр. 370-384) 101. Основы устройства кэша: ассоциативность, теги, бит актуальности, промахи и попадания, чтение и запись, размер кэша. Кэш инструкций и кэш данных. Организация памяти с кэшем. [9] (стр. 473-491)
- 102. Общие принципы дедуктивной верификации программ. Операционная семантика императивных программ. Формальная постановка задачи верификации программ. Логика Хоара: правила вывода и свойства. Автоматизация проверки правильности программ. [12, с. 47-70]
- 103. Темпоральная логика деревьев вычислений СТL. Синтаксис и семантика СТL. Примеры спецификаций моделей в терминах формул СТL. Темпоральная логика линейного времени PLTL. Синтаксис и семантика PLTL. Свойства живости и безопасности. Ограничения справедливости. Задача верификации моделей (model-checking). [10, с. 55-63] 104. Табличный алгоритм верификации моделей для СТL. Обоснование корректности и сложности табличного алгоритма верификации моделей. Проблема "комбинаторного взрыва". Символьные средства описания моделей и их применение для преодоления эффекта "комбинаторного взрыва". Программно-инструментальное средство верификации моделей программ nu-SMV. [10, с. 64-70, 83-90, 95-105]
- 105. Табличная верификация моделей для PLTL. Автоматы Бюхи: их свойства и обобщения. Трансляция формул PLTL в автоматы Бюхи. Сведение задачи проверки выполнимости формул PLTL к проблеме пустоты для автоматов Бюхи. Программно-инструментальное средство верификации моделей программ SPIN. [10, 172-192]
- 106. Замкнутые классы алгебры логики. Теорема Поста о замкнутых классах алгебры логики. Структура доказательства теоремы Поста. Конечная порождаемость замкнутых классов. Решетка замкнутых классов. [12] (стр. 47-65)
- 107. Алгоритм распознавания полноты в k-значной логике. [15] (стр. 51-53)
- 108. Теорема Кузнецова о функциональной полноте. [15] (стр. 53-56)
- 109. Сети Петри. Моделирование конкурирующих параллельных процессов сетями Петри. Основные свойства сетей Петри. Покрывающее дерево сети Петри. Разрешимость проблем ограниченности, безопасности и покрытия для обыкновенных сетей Петри. Неразрешимость проблемы эквивалентности для обыкновенных сетей Петри. [13] (стр. 14-32)
- 110. Стандартные схемы программ. Проблема функциональной эквивалентности для стандартных схем программ. Неразрешимость проблемы функциональной эквивалентности. Логикотермальная эквивалентность стандартных схем программ. Разрешимость проблемы логикотермальной эквивалентности стандартных схем программ. [14] (стр. 67-83, 92-101)

Рекомендуемая литература

- 111. Ложкин С.А. Дополнительные главы кибернетики и теории оправляющих систем. Электронная версия, 2013.
- 112. Редькин Н. П. Надежность и диагностика схем. М.: МГУ, 1992. 192 с.
- 113.Harris D.M., Harris S.L. Digital design and computer architecture. 2nd ed. Amsterdam, Boston: Morgan Kaufmann Publishers. 2012.

- 114. Харрис Д.М., Харрис С.Л. Цифровая схемотехника и архитектура компьютера. Второе издание. Электронная книга, официальный перевод [1]. 2015.
- 115.Bhasker J. Verilog HDL synthesis. A practical primer. USA, Allentown: Star Galaxy Publishing. 1998.
- 116.Hatchel G.D., Somenzi F. Logic Synthesis and Verification Algorithms. Kluwer Academic Publishers, 2002.
- 117. Giovanni De Micheli Synthesis and Optimization of Digital Circuits. McGraw-Hill Science/Engeneering/Math, 1994.
- 118. Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu. VLSI Physical Design: From Graph Partitioning to Timing Closure, 2011
- 119.Patterson D.A., Hennessy J.L. Computer organization and design. 3rd ed. San Francisco: Morgan Kaufmann Publishers. 2005.
- 120.Э.М. Кларк, О. Грамберг, Д. Пелед. Верификация моделей программ: Model Checking. Изд- во МЦНМО, 2002. 417 с.
- 121.K. R. Apt, E.-R. Olderog. Verification of sequential and concurrent programs, Springer, 1997, 365 p.
- 122. Марченков С.С. Основы теории булевых функций. М.: Физматлит, 2014.
- 123. Котов В.Е. Сети Петри. М.: Наука, 1984.
- 124. Котов В.Е., Сабельфельд В.К. Теория схем программ. М.: Наука, 1991.
- 125. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. 126.

Магистерская программа "Интеллектуальные системы"

- 127. Понятие парадигмы (стиля) программирования. Основные особенности императивного, функционального, логического и объектно-ориентированного программирования.
- 128.Соотношение между парадигмами программирования и возможностями языка программирования. Примеры языков, навязывающих, поддерживающих или запрещающих применение той или иной парадигмы.
- 129.Особенности и основные возможности модели ленивых вычислений.
- 130.Поколения архитектур компьютеров и парадигмы программирования. Архитектурные особенности современных микропроцессоров. Программно-аппаратная архитектура суперкомпьютеров Ломоносов и Blue Gene/P.
- 131.Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 132. Логическая модель представления знаний: применение логики предикатов первого порядка. Этапы представления знаний, основные сложности. База знаний и база данных.
- 133. Логическая модель представления знаний: дескриптивные логики. Концепты и роли, соотношение с логикой предикатов. Терминологии и решаемые для них задачи.
- 134. Сетевая модель представления знаний. Семантические сети и их особенности. Фреймы, их виды и структура. Межфреймовые связи, сети фреймов. Представление значений по умолчанию, понятие немонотонного вывода.
- 135. Понятие онтологии в инженерии знаний: состав онтологии, типы отношений концептов. Классификация онтологий, примеры. Особенности лингвистических онтологий.
- 136.Продукционная модель представления знаний: структура и цикл работы продукционной системы. Нечеткие знания и их обработка в продукционных экспертных системах.
- 137. Методы эвристического поиска в пространстве состояний и их оптимизация: алгоритм восхождения к вершине (Hill Climbing), лучевой поиск (Beam Search), А*-алгоритм, метод ветвей и границ (Branch and Bound). Сокращение пространства состояний.
- 138. Классическая линейная модель регрессии: описание модели, основные ограничения, метод наименьших квадратов.
- 139.Дискриминантный анализ: постановка задачи и ее решение в случае известных параметров.
- 140. Модели прогнозирования на основе деревьев принятия решений. Алгоритмы

- построения дерева ID3 и C4.5: критерии поиска разбиений, основные особенности.
- 141. Нейронные сети прямого распространения. Архитектура MLP: структура сети, виды функций активации, обучение методом обратного распространения ошибки, проблема переобучения и локальных минимумов.
- 142. Машинное обучение: обучение с учителем. Метод ближайших соседей и метод опорных векторов: общая характеристика, области применения, способы оценки решений.
- 143. Машинное обучение: обучение без учителя. Метод кластеризации К-средних. Иерархическая кластеризация. Оценка качества кластеризации. Кластеризация текстовой коллекции: признаковая модель текста и ее применение.
- 144. Уровни языка и основные этапы и модули анализа текста лингвистическим процессором. Подходы к решению прикладных задач компьютерной лингвистики: основанный на правилах и основанный на машинном обучении.
- 145.Статистическая языковая модель: униграммные и N-граммные модели, области их применения в задачах обработки текстов. Сглаживание модели. Перплексия и способ ее подсчета.
- 146. Генерация текста: методы и приложения. Машинный перевод: основные подходы и стратегии. Автоматическое реферирование и аннотирование документов: базовые технологии.
- 147. Извлечение информации из текстов: особенности направления, виды извлекаемых данных, применяемые подходы. Понятие лингвистического шаблона. Задача извлечения мнений и анализа тональности текстов.
- 148. Лингвистические ресурсы и их назначение. Словари, тезаурусы, коллекции и корпуса текстов. Характеристики корпусов, виды разметки текстов. Семантические отношения в тезаурусах.
- 149. Процессная модель управления проектом: основные процессы и их взаимодействие. Особенности управления программным проектом.
- 150. Сетевое планирование проекта. Примеры создания сетевых графиков и назначения ресурсов.

Рекомендуемая литература

- 151.Себеста Р. Основные концепции языков программирования М.: «Вильямс», 2001.
- 152.Хендерсон П. Функциональное программирование. Применение и реализация. М.: Мир, 1983.
- 153. Добров Б.В., Иванов В.В., Лукашевич Н.В., Соловьев В.Д. Онтологии и тезаурусы: модели, инструменты, приложения. Изд-во ИНТУИТ, 2009.
- 154. Джарратано Дж., Райли Г. Экспертные системы. Принципы разработки и программирование М.: «Вильямс», 2007.
- 155. Рассел С., Норвиг П. Искусственный интеллект: современный подход, 2-е изд. // Пер. с англ. - М.: «Вильямс», 2006.
- 156. Частиков А.П., Гаврилова Т.А., Белов Д.Л. Разработка экспертных систем. Среда CLIPS. СПб.: БХВ-Петербург, 2003.
- 157.Handbook of Knowledge Representation /van Harmelen R., Lifschitz V., Porter B. (Eds.), Foundations of Artificial Intelligence. Elsevier, 2008.
- 158. The Description Logic Handbook: Theory, Implementation and Applications/ Baader F., Calvanese D., MacGuinness D., Nardi D.(Eds.). Cambridge University Press, 2007.
- 159. Андерсон Т. Введение в многомерный статистический анализ. М.: Наука, 1963.
- 160.Болч К., Хуань К.Дж. Многомерные статистические методы для экономики. М.: Статистика, 1979.
- 161. Кулаичев А.П. Методы и средства комплексного анализа данных. М.: Форум-М, 2006.
- 162. Хайкин С. Нейронные сети. Полный курс. 2-е изд.: Пер. с англ. М.: «Вильямс», 2006.
- 163.Rokach L. Data Mining with Decision Trees: Theory and Applications. World Scientific, 2008.
- 164. Автоматическая обработка текстов на естественном языке и компьютерная лингвистика: учеб. пособие / Большакова Е.И. и др. М.: МИЭМ, 2011.
- 165. Васильев В. Г., Кривенко М. П. Методы автоматизированной обработки текстов. М.:

ИПИ РАН, 2008.

- 166. Лукашевич Н.В. Тезаурусы в задачах информационного поиска. М.: Изд-во Московского университета, 2011.
- 167. Прикладная и компьютерная лингвистика / Под ред. И.С. Николаева и др. М.: ЛЕНАНД, 2016.
- 168. Jurafsky D., Martin J. Speech and Language Processing. An Introduction to Natural Language Processing, Comp. Linguistics and Speech Recognition. Prentice Hall, 2000.
- 169. Manning Ch. D., Schutze H. Foundations of Statistical Natural Language Processing. MIT Press, 1999.
- 170. Ларсен Э.Н., Клиффорд Ф.Грей Управление проектами (5-е издание) М.: «Дело и Сервис», 2013.

Магистерская программа "Интеллектуальный анализ больших данных"

- 1. Линейная регрессионная модель. Метод наименьших квадратов. Основные свойства оценок метода наименьших квадратов.
- 2. Проверка линейных гипотез в рамках классической модели регрессии.
- 3. Дискриминантный анализ: постановка задачи и ее решение в случае известных параметров.
- 4. Кластерный анализ: постановка задачи и основные понятия.
- 5. Спектральный анализ временных рядов. Периодограмма выборочная. Свойства периодограммы. Сглаженная периодограмма.
- 6. Линейная ARMA(p,q) модель временных рядов. Стационарность, обратимость. Автокорреляционная и частная автокорреляционная функции. Оценивание параметров. Прогнозирование.
- 7. Общие принципы выбора страховых тарифов и тарифных ставок.
- 8. Асимптотическая формула для страховых тарифов в статической модели страхования: сравнение классической и факторизационной модели.
- 9. Гарантированные оценки страховых тарифов для факторизационной модели страхования при пуассоновском объеме портфеля.
- 10. Преобразование Фурье и его свойства. Линейные фильтры. Теорема о свертке.
- 11. Кратномасштабный анализ. Алгоритмы разложения и реконструкции.
- 12. Пороговая обработка коэффициентов вейвлет-разложения. Методы выбора порога.
- 13. Модель вычислений MapReduce. Пример реализации (Google MapReduce либо Hadoop MapReduce). Стадии вычислений, основные компоненты, понятие локальности данных.
- 14. Модель обработки данных в Apache Spark. Понятие resilient distributed dataset (RDD), примеры преобразований и действий над RDD. Граф вычислений.
- 15. Распределенная файловая система. Пример распределенной файловой системы (Google File System либо HDFS). Компоненты, основные операции, сценарии чтения и записи данных, механизмы отказоустойчивости.
- 16. Способы объектно-реляционного отображения для классов и атрибутов, бинарных и N-арных ассоциаций, классов ассоциаций, иерархий наследования. Примеры применения этих способов. Моделирование схемы реляционной базы данных с помощью диаграммы классов.
- 17. Образцы (паттерны) проектирования, их классификация и способ описания. Примеры образцов: структурного, поведенческого и порождающего.
- 18. Модели прогнозирования на основе деревьев решений. Алгоритмы CHAID, CART, C4.5: критерии поиска разбиений, параметры ограничения роста и обрубания дерева.
- 19. Нейронные сети прямого распространения. Архитектуры MLP и RBF: структура сетей, виды функций активации, алгоритмы обучения, борьба с переобучением и с

проблемой локальных минимумов.

- 20. Поиск ассоциативных правил. Алгоритмы Apriori и FP-tree: построение частых эпизодов с ограничением по поддержке и формирование правил с ограничением по достоверности.
- 21. Векторная модель информационного поиска. Показатели tf и idf. Вычисление близости между запросом и документом. Применение метода "Наивный Байес" для автоматической классификации текстов.
- 22. Алгоритм ссылочного ранжирования PageRank: способ вычисления, роль в информационном поиске.
- 23. Шаг обработки данных (data step) в языке программирования SAS Base. Общая схема функционирования, понятие PDV, опции и ограничения наборов данных
- (where, keep, drop, rename, end). Использование by-группировки и retain переменных для расчета агрегаций.
- 24. Применение процедуры SAS/STAT GLM для решения задач дисперсионного и регрессионного анализа: синтаксис, основные параметры. Отбор и группировка категориальных предикторов. Интерпретация результатов: основные статистики и графики.
- 25. Применение процедуры SAS/STAT LOGISTIC для решения задач бинарной и многоклассовой классификации: синтаксис, основные параметры. Пошаговые алгоритмы отбора переменных. Интерпретация результатов: основные статистики и графики.
- 26. Преобразование изображения на основе эквализации гистограммы яркости.
- 27. Свёртка функций. Одномерная и двумерная свёртка и её свойства. Дискретная свертка изображений. Обработка края изображения при свёртке.
- 28. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 29. Архитектурные особенности графических процессоров, направленные на массивно-параллельные вычисления.

- 1. Андерсон Т. Введение в многомерный статистический анализ. М.: Наука, 1963.
- 2. Шеффе Г. Дисперсионный анализ. М.: Наука, 1980.
- 3. Hardle W., Simar L. Applied Multivariate Statistical Analysis. Springer-Verlag, 2003.
- 4. Johnson R.A. and Winchern D.W. Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007.
- 5. Факторный, дискриминантный и кластерный анализы. М.: Финансы и статистика, 1989.
- 6. Себер Дж. Линейный регрессионный анализ. М.: Мир, 1980.
- 7. Дженкинс Г. Ваттс Д. Спектральный анализ и его приложения. М. Мир, 1972.
- 8. Бокс Дж., Дженкинс Г. Анализ временных рядов прогноз и управление. М. Мир, 1974.
- 9. Б.В. Гнеденко, Э.А.Даниелян, Б.Н. Димитров, Г.П. Климов, В.Ф. Матвеев, Приоритетные системы обслуживания. Издательство Московского университета, 1973.
- 10. В.Ф. Матвеев, В.Г. Ушаков Системы массового обслуживания. Издательство Московского университета, 1984.
- 11. Захарова Т.В., Шестаков О.В. Вейвлет-анализ и его приложения. 2-е изд., перераб. и доп. Учебное пособие. М.: ИНФРА-М. 2012.
- 12. Чак Лэм. Hadoop в действии. M: ДМК Пресс. 2012, 424c.
- 13. X. Карау, Э. Конвински, П.Венделл, М. Захария. Изучаем Spark. Молниеносный анализ данных. М: ДМК Пресс. 2015, 304с.
- 14. Рамбо Дж., Блаха М. UML 2.0. Объектно-ориентированное моделирование и разработка. СПб.: Питер. 2007. Главы 3 и 19.
- 15. Гамма Э. и др. Приемы объектно-ориентированного проектирования. Паттерны проектирования.: Пер. с англ. СПб.: Питер, 2016.
- 16. Гонсалес Р., Вудс Р. Цифровая обработка изображений.: Пер. с англ. М.: Техносфера, 2006. 1070 с.

- 17. Шапиро Л., Стокман Дж. Компьютерное зрение: Пер. с англ. М.: БИНОМ. Лаборатория знаний, 2006. 752 с.
- 18. Hastie, Tibshirani and Friedman. The Elements of Statistical Learning. Springer- Verlag, 2009. 763 pages. http://statweb.stanford.edu/~tibs/ElemStatLearn/
- 19. Саймон Хайкин. Нейронные сети. Полный курс. 2-е изд., испр.: Пер. с англ. М.: OOO «И. Д. Вильямс», 2006. 1104 с.
- 20. Lora D. Delwiche, Susan J. Slaughter. The Little SAS® Book: A Primer, Fifth Edition. SAS Institute, 2012. 331 pages.
- 21. SAS/STAT User's Guide. http://support.sas.com/documentation/onlinedoc/stat/index.html
- 22. Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. Вильямс, 2011.
- 23. Лукашевич Н.В. Тезаурусы в задачах информационного поиска. М.: Изд-во Московского университета, 2011
- 24. Ингерсолл Г., Мортон Т. Обработка неструктурированных текстов. Поиск, организация и манипулирование. ДМК-Пресс, 2015.

Магистерская программа

"Информационная безопасность компьютерных систем"

- 1. Односторонние функции. Сильно и слабо односторонние функции, теорема Яо о связи между ними. Дискретная экспонента как пример гипотетической односторонней функции.
- 2. Криптографически стойкий генератор псевдослучайных последовательностей. Два определения стойкости псевдослучайных генераторов и их эквивалентность. Трудный предикат функции. Теорема Гольдрайха Левина (без доказательства). Построение псевдослучайного генератора из односторонней перестановки.
- 3. Доказательства с нулевым разглашением. Интерактивная пара машин Тьюринга. Протокол интерактивного доказательства. Три типа нулевого разглашения. Теорема о существовании доказательств с нулевым разглашением для всех языков из класса NP (идея доказательства).
- Методы анализа блочных шифров. Понятия линейного и дифференциального анализа.
- 5. Т-функции. Определение, основные свойства. Т-функции как детерминированные функции автоматов с бинарным входом/выходом (с доказательством). Т-функции как 1-липшицевы функции на пространстве целых 2-адических чисел (с доказательством).
- 6. Т-функции, сохраняющие меру: критерии и достаточные условия для Т-функций, в том числе и многих переменных (для равномерно дифференцируемых функций с доказательством; в терминах рядов Малера и координатных функций только формулировки). Латинские квадраты на основе Т-функций (с доказательством) и их применение в псевдослучайных генераторах.
- 7. Эргодические Т-функции: критерии и признаки эргодичности Т-функций (в терминах рядов Малера формулировка; для равномерно дифференцируемых Т-функций с доказательством).
- 8. Криптосистема Рабина: алгоритм генерации ключей, функция шифрования и функция расшифрования. Обоснование корректности алгоритма расшифрования. Связь криптосистемы Рабина и задачи факторизации целых чисел.
- 9. Криптосистема RSA. Односторонняя функция RSA и односторонняя функция RSA с секретом. Теорема о связи односторонней функции RSA и задачи факторизации целых чисел. Проблема RSA.
- 10. Анализ криптосистемы RSA. Эквивалентные ключи. Теорема об описании класса эквивалентности секретного ключа. Итерация процесса шифрования. Оценка сложности.
- 11. Основные понятия теории линейных кодов: линейный код, порождающая и проверочная матрица, длина, размерность, кодовое расстояние. Граница Хэмминга. Граница Варшамова-Гильберта. Граница Синглтона.
- 12. Циклические коды. Цикличность кодов Хэмминга. Коды БЧХ. Граница БЧХ.
- 13. Коды Рида-Соломона. Декодирование кодов Рида—Соломона с помощью алгоритма

Берлекэмпа-Мэсси.

- 14. Задача кодирования дискретного источника без памяти равномерными кодами. Прямая теорема для равномерного кодирования дискретного источника без памяти. Обратная теорема для равномерного кодирования дискретного источника без памяти.
- 15. Неравномерное кодирование дискретных стационарных источников: постановка задачи, скорость создания, формулировка прямой и обратной теорем кодирования, оптимальный код, теорема о существовании оптимального D-ичного кода для одноместного ансамбля, метод Хаффмена с обоснованием.
- 16. Модели анализа выявляемости LSB метода. Пропускная способность LSB метода. Способы уничтожения скрытых каналов, основанных на LSB методе.
- 17. Архитектурные особенности современных микропроцессоров. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритма.

Список рекомендованной литературы

- [1] Введение в криптографию. Под общей редакцией В. В. Ященко. Издание 4-е, дополненное. МЦНМО, М., 2012.
- [2] O. Goldreich. Foundations of cryptography. Volume 1 (Basic tools). Volume 2 (Basic applications). Cambridge University Press, 2001 (v. 1), 2004 (v. 2).
- [3] M. Luby. Pseudorandomness and cryptographic applications. Princeton University Press, 1996.
- [4] S. Arora, B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, USA 2009.
- [5] http://www.cryptography.ru
- [6] Брюс Шнайер Прикладная криптография, «Издательство ТРИУМФ», 2002.
- [7] Алфёров А.П., Зубов А.Ю., Кузьмин А.С., Черемушкин А.В. Основы криптографии, 2004.
- [8] Х.К.А. ван Тилборг Основы криптологии, МИР, 2006.
- [9] Э.А. Применко Алгебраические основы криптографии «Либроком» 2013.
- [10] О.А. Логачев, А.А. Сальников, В.В. Ященко Булевы функции в теории кодирования и криптологии, МЦНМО, 2004.
- [11] А.Чмора Современная прикладная криптография, Гелиос АРВ, 2001.
- [12] Д. Кнут Искусство программирования, т.2, МИР, 1977.
- [13] А.А. Варфоломеев, А.Е. Жуков, М.А. Пудовкина Поточные криптосистемы, основные свойства и методы анализа стойкости. Москва 2000.
- [14] Р. Лидл, Г. Нидеррайтер Конечные поля т.1, т.2, МИР 1988.
- [15] V. Anashin, A. Khrennikov. Applied Algebraic Dynamics. DeGruyter, Berlin, 2009
- [16] V.Anashin. The Non-Archimedean Theory of Discrete Systems. Math. Comp. Sci. 2012, vol. 6, No 4, pp. 375-393
- [17] Мафтик, С. Механизмы защиты в сетях ЭВМ. М.: Мир, 1993. 216 с.
- [18] Аграновский тА.В., Девянин П.Н., Хади Р.А., Черемушкин А.В. Основы компьютерной стеганографии. М.: Радио и связь, 2003. 152 с.
- [19] Грибунин В.Г., Оков И.Н., Туринцев И.В. Цифровая стеганография. М.: СОЛОН-Пресс, 2002. 272 с.
- [20] Мак-Вильямс Ф. Д., Слоэн Д. Н. Теория кодов, исправляющих ошибки. Москва: Связь, 1979.
- [21] Handbook of Coding theory, volume I, chapter 7, pages 649?754. North- Holland (1998).
- [22] Виноградов И.М. Основы теории чисел. М.:Наука, 1990.-167с.
- [23] А.А. Бухштаб Теория чисел. М:Лань, 2015 г.

Магистерская программа "Исследование операций и актуарная математика"

1. Формулировка задачи оптимизации поиска равновесных объемов и цен в сетевом

аукционе поставщиков и потребителей одного товара с ограничениями на передачу.

- 2. Определение равновесных цен в сетевом аукционе.
- 3. Финансовый баланс в сетевом аукционе с ограничениями на передачу.
- 4. Формулировка задачи выбора состава включенного генерирующего оборудования. Нарушение условий индивидуальной рациональности в задаче с бинарными переменными, моделирующими состояние оборудование.
- 5. Материальные и финансовые балансы. Описание одного из экономических агентов (производство, домашние хозяйства, государство, коммерческий банк) в однопродуктовой модели.
- 6. Динамические межотраслевые модели. Понятия траектории, стационарной траектории, динамического равновесия.
- 7. Модель Вальраса. Модель динамического равновесия вальрасовского типа, существование равновесных траекторий.
- 8. Описание модели Рамсея. Магистральное свойство сбалансированного роста.
- 9. Существование равновесия в модели Неймана
- 10. Модель парной линейной регрессии. Метод наименьших квадратов. Теорема Гаусса-Маркова.
- 11. Модель множественной регрессии. Метод наименьших квадратов. Теорема Гаусса-Маркова.
- 12. Понятие временного ряда. Понятие строго стационарного временного ряда. Условия стационарности временного ряда в широком смысле.
- 13. Нестационарный процесс авторегрессии интегрированного скользящего среднего ARIMA(p,d,q).
- 14. Подход Бокса-Дженкинса построения модели типа ARIMA(p,d,q) по реализации временного ряда
- 15. Статистические свойства оценок по методу наименьших квадратов параметров парной линейной регрессии.
- 16. Проверка гипотезы. Доверительные интервалы для коэффициентов регрессии. Коэяффициент детерминации.
- 17. Статистические свойства оценок по методу наименьших квадратов параметров множественной регрессии. Коэффициент детерминации и скорректированный коэффициент детерминации.
- 18. Проверка гипотезы о линейном ограничении общего вида.
- 19. Модели процессов авторегрессии и скользящего среднего: AR(p), MA(q) и ARMA(p,q). Условия стационарности этих процессов.
- 20. Напишите уравнение Лагранжа для массивного стержня длины L и массы m с закреплённым концом, колеблющегося в вертикальной плоскости, и оцените частоту его колебаний.
- 21. Напишите функцию Лагранжа для замкнутой системы из N взаимодействующих материальных точек и выведите закон сохранения энергии из гипотезы об однородности времени.
- 22. Сформулируйте необходимые и достаточные условия продуктивности неотрицательной, неразложимой матрицы в модели Леонтьева и докажите, что матрица является продуктивной или не является таковой.
- 23. Опишите математическую модель коллективного поведения П.С. Краснощёкова и рассмотрите случай, когда у всех членов коллектива коэффициенты индивидуализма равны (стадо).
- 24. Популяционные игры. Равновесие Нэша и строгое равновесие.
- 25. Модель динамики репликаторов.
- 26. Теоремы о связи равновесий Нэша и строгих равновесий с устойчивыми точками модели динамики репликаторов.
- 27. Модель взаимодействия родственников. Утверждение о доминирующей стратегии. Распространение альтруизма и кооперации.
- 28. Многоуровневая модель налоговой инспекции.

- 29. Оптимальная стратегия проверок при фиксированных затратах на проверки и штрафах.
- 30. Поколения архитектур компьютеров и парадигмы программирования.
- 31. Архитектурные особенности современных микропроцессоров.
- 32. Программно-аппаратная архитектура суперкомпьютеров Ломоносов и Blue Gene/P.
- 33. Последовательная и параллельная сложность алгоритмов.
- 34. Информационный граф и ресурс параллелизма алгоритмов.
- 35. Методы организация параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 36. Суперкомпьютерное моделирование турбулентных течений.
- 37. Использование суперкомпьютеров для решения задач молекулярного моделирования.
- 38. Архитектурные особенности графических процессоров, направленные на массивнопараллельные вычисления.
- 39. Методы эффективной организации параллельных вычислений на графических процессорах.

- 1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. М.: Дело, 2001.-400 с.
- 2. Носко В.П. Эконометрика. Книга 1, М.: Дело, 2012, 672 с.
- 3. Канторович Г.Г. Анализ временных рядов // Экономический журнал Высшей школы экономики, 2002, Т.7, №1, с. 85 115.
- 4. Канторович Г.Г. Анализ временных рядов // Экономический журнал Высшей школы экономики, 2002, Т.7, №2, с. 251 273.
- 5. Самарский А.А., Михайлов А.П. Математическое моделирование. М., Физматлит, 2001.
- 6. Краснощеков П.С., Петров А.А. Принципы построения моделей. М.: МГУ, 1983.
- 7. Васин А.А., Краснощеков П.С., Морозов В.В. Исследование операций. Прикладная математика и информатика. М.: Изд. центр Академия, 2008. 464с.
- 8. Ашманов С.А. Введение в математическую экономику. М.: Наука, 1984
- 9. Поспелов И.Г. Моделирование экономических структур. М: Фазис, 2003
- 10. Поспелова И.И. Динамические модели макроэкономики. М.: МГУ, 2006
- 11. Васин А.А. Некооперативные игры в природе и обществе. М.: МАКС Пресс, 2005.

Магистерская программа "Квантовая информатика"

- 1. Классическое и квантовое пространство состояний. Виды эволюции: унитарная и измерение. Уравнение Шредингера и решение задачи Коши для него в общем случае. Правило Борна. Дискретизация пространства состояний.
- 2. Физические величины как операторы. Собственные состояния и собственные значения. Операторы координаты, импульса, энергии и момента. Их собственные состояния и собственные значения. Одновременное измерение физических величин и коммутация операторов. Принцип неопределенности Бора-Гейзенберга.
- 3. Композитные системы и частичные матрицы плотности. Смешанные состояния. Уравнение Шредингера на матрицу плотности.
- 4. Интегралы Фейнмана по путям и их эквивалентность уравнению Шредингера.
- 5. Оператор обобщенного момента и его отличие от момента импульса.
- 6. Эксперимент Штерна-Герлаха и его интерпретация. Возможные собственные значения квадрата момента и его проекции на одну из осей. Спин электрона и его взаимодействие с магнитным полем. Спин двух-электронной системы.
- 7. Синглетные и триплетные состояния. Различные базисы в системе двух спинов.
- 8. Квантовые гейты и квантовый компьютер. Квантовое ускорение. Алоритм Гровера.
- 9. Квантовый криптографический протокол ВВ84 и его преимущества по сравнению с классическими криптографическими протоколами.
- 10. Конечномерная модель квантовой электродинамики Джейнса-Каммингса-
- 11. Хаббарда и Тависа-Каммингса. Приближение вращающейсая волны.

- 12. Статистические ансамбли. Распределение Гиббса. Статистическая сумма и энтропия.
- 13. Методы распараллеливания задач линейной алгебры. Суперкомпьютерное моделирование квантовой динамики системы заряженных части и одномодового поля

Магистерская программа "Компиляторные технологии"

- 1. Основные понятия дедуктивной верификации. Методы доказательства корректности программ.
- 2. Основные понятия дедуктивной верификации. Методы доказательства завершимости программ.
- 3. Основные сведения об объектном языке ограничений (OCL): состав OCL-выражения, навигация по ассоциациям, виды коллекций, операции с коллекциями, учёт наследования в выражениях и наследование ограничений. Примеры использования OCL.
- 4. Способы объектно-реляционного отображения для классов и атрибутов, бинарных и Nарных ассоциаций, классов ассоциаций, иерархий наследования. Примеры применения этих способов. Моделирование схемы реляционной базы данных с помощью диаграммы классов.
- 5. Образцы (паттерны) проектирования, их классификация и способ описания. Примеры образцов: структурного, поведенческого и порождающего.
- 6. Основные понятия безопасности информации: конфиденциальность, целостность, доступность. Виды защиты информации. Модель Белла-Лападулы. Понятие ошибки, уязвимости в программном обеспечении, примеры.
- 7. Ошибка типа «переполнение буфера». Выполнение произвольного кода на исполнимом стеке. Противодействие выполнению кода на стеке: «канарейка», DEP. Выполнение произвольного кода на неисполнимом стеке. Return-to-libc, return-oriented programming (ROP).
- 8. Статический анализ исходного кода с целью поиска ошибок. Типы обнаруживаемых ошибок. Путь распространения ошибки: source, propagation, sink. Потоковая и контекстная чувствительность. Качество результата анализа: false/true positive/negative. Интерпретация результатов анализа.
- 9. Применение отладки для оценки возможности эксплуатации уязвимостей. Технологии отладки. Отладка пользовательского кода. Полносистемная отладка в виртуальной машине. Статическое и динамическое инструментирование. Фаззинг. Разновидности фаззинга: черный ящик, белый ящик, серый ящик.
- 10. Символьное выполнение: основные понятия. Схема работы системы символьного выполнения. Предикат пути, предикат безопасности. Проблема экспоненциального взрыва, стратегии выбора следующего состояния.
- 11. Метод нумерации значений в пределах базового блока и в пределах процедуры. Реализация метода путем построения ориентированных ациклических графов и использования хеш-функций.
- 12. Исключение частично-избыточных выражений методом анализа потока данных.
- 13. Граф зависимостей программы: определение, построение, применение.
- 14. Проблемы статического анализа объектно-ориентированных языков (C++, Java). Поток управления в присутствии исключений. Анализ конструкторов и деструкторов. Вызовы по указателю и их анализ. Девиртуализация.
- 15. Инструментирование при динамическом анализе: инструментирование исходного кода программ при компиляции, динамическая двоичная трансляция.
- 16. Архитектурные особенности графических процессоров, направленные на массивно-параллельные вычисления.
- 17. Методы эффективной организации параллельных вычислений на графических процессорах.

Список рекомендованной литературы

1. Буздалов, Корныхин, Панфёров, Петренко, Хорошилов. Практикум по дедуктивной верификации программ: учебно-метоДическое пособие. -М.: МАКС-Пресс, 2014.

- 2. Б.Мейер. Объектно-ориентированное конструирование программных систем М.: Русская РеДакция, 2005.
- 3. Арлоу Д., НейштаДт А. UML 2 и унифицированный процесс. Практический объектноориентированный анализ и проектирование. - СПб.: Символ-Плюс.- 2008. Глава 25.
- 4. Рамбо Дж., Блаха М. UML 2.0. Объектно-ориентированное моДелирование и разработка. СПб.: Питер. 2007. Главы 3 и 19.
- 5. Гамма Э. и Др. Приемы объектно-ориентированного проектирования.Паттерны проектирования.: Пер. с англ. СПб.: Питер, 2016.
- 6. Brian Chess, Jacob West. Secure Programming with Static Analysis / Addison-Wesley Professional, 2007. Aleph One. Smashing the Stack for Fun and Profit
- 7. Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit Hardening Made Easy.
- 8. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson Engler. A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
- 9. William R. Bush, Jonathan D. Pincus, David J. Sielaff. A Static Analyzer for Finding Dynamic Programming Errors.
- 10. Eli Bendersky. Серия статей "How debuggers work".
- 11. Chow J., Garfinkel T., Chen P. M. Decoupling dynamic program analysis from execution in virtual environments // USENIX2008 Annual Technical Conference on Annual Technical Conference. 2008. C. 114
- 12. Nethercote N., Seward J. Valgrind: a framework for heavyweight dynamic binary instrumentation // ACM Sigplan notices. ACM, 2007. T. 42. № 6. C. 89-100.
- 13. Амини П., Саттон М., Грин А. Fuzzing: исследование уязвимостей методом грубой силы. СимволПлюс, 2009.
- 14. Edward J. Schwartz, Thanassis Avgerinos, David Brumley. All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but might have been afraid to ask), 2010
- 15. C. Cadar, D. Dunbar, D. Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs, 2008.
- 16. Альфред В. Ахо, Моника С. Лам, Рави Сети, Джеффри Д. Ульман. Компиляторы: принципы, технологии и инструментарий. Второе издание. Москва, Вильямс, 2008.
- 17. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург, 2002. 608 с.
- 18. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А.
- 19. Новые алгоритмы вычислительной гиДроДинамики Для многопроцессорных вычислительных комплексов./М.: ИзДательство Московского университета, 2013, 472 с.
- 20. Якобовский М.В. ВвеДение в параллельные метоДы решения заДач: Учебное пособие . М.: ИзДательство Московского университета, 2012. 328 с.
- 21. Антонов А.С. Технологии параллельного программирования MPI и OpenMP: Учеб. пособие. М.: ИзДательство Московского университета, 2012.-344 с.-(Серия "Суперкомпьютерное образование"). ISBN 978-5-211-06343
- 22. А. В. Боресков и Др. Параллельные вычисления на GPU. Архитектура и программная моДель CUDA: Учебное пособие. -ИзДательство Московского университета, 2012, 336 стр.
- 23. Интернет pecypcы: http://parallel.ru, http://AlgoWiki-Project.org, www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf

Магистерская программа

"Компьютерное зрение, графика и обработка изображений"

- 1. Обучение с учителем. Принцип минимизации эмпирического риска. Переобучение и борьба с переобучением. Оценка качества классификаторов.
- 2. Задача снижения размерности. Метод главных компонент. Оценка качества

- аппроксимации. Итеративный алгоритм построения.
- 3. Линейная классификация и регрессия. Методы обучения линейных классификаторов, функции потерь. Логистическая регрессия.
- 4. Бустинг. Алгоритм AdaBoost, метод xgBoost.
- 5. Проблемы построения метрики сравнения изображений. Метрика SSIM.
- 6. Полная вариация изображений. Ее связь с характеристиками изображений.
- 7. Методы повышения разрешения изображений и метод суперразрешения.
- 8. Фильтры Габора. Примеры их применения..
- 9. Алгоритм Канни для детектирования контуров изображений.
- 10. Диффузионная фильтрация изображений.
- 11. Локальные особенности изображений и их дескрипторы.
- 12. Основные архитектуры свёрточных нейросетей для классификации изображений.
- 13. Нейросетевые модели выделения объектов на изображении и оценка качества детекторов.
- 14. Нейросетевые архитектуры для сетей преобразования изображений и сегментации.
- 15. Модели и ошибки обучения методов стилизации и генерации изображений.
- **16.** Трёхмерная реконструкция итеративная схема "структура из движения", декомпозиция на подзадачи, эпиполярная геометрия.
- 17. Способы визуализации HDR и алгоритмы тональной компрессии: классификация, достоинства и недостатки, идеи алгоритмов.
- 18. Виды структур пространственного разбиения: Kd-деревья. BVH деревья. Surface Area Heuristic.
- 19. Монте-Карло трассировка путей. Обыкновенный Монте Карло и Монте-Карло по схеме Марковских цепей (Markov Chain Monte Carlo, MCMC). Metropolis Light Transport.
- 20. MapReduce и Hadoop MapReduce. Компоненты, их функции и взаимодействие, ключевые понятия. Стадии MapReduce.
- 21. Архитектура графических (GPU) и центральных (CPU) процессоров: модель массивнопараллельного выполнения; как устраняются зависимости по данным на CPU и GPU? Сколько приблизительно времени (в тактах процессора) занимает доступ в память на современных ЭВМ и как решается проблема латентного доступа к памяти на CPU и GPU? В чём отличие механизма кэширования данных для CPU и GPU?
- 22. Основные примитивы параллельного программирования на GPU: редукция, префиксная сумма, сортировка (привести минимум 2 алгоритма), атомарные операции. Указать и объяснить сложность каждого из алгоритмов/механизмов из расчёта в операциях на 1 поток.

- 1. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.:Питер, 2018, -480 с.
- 2. Иошуа Бенджио, Ян Гудфеллоу, Аарон Курвилль. Глубокое обучение.: Пер. с англ. М.: ДМК
 - 3. Пресс, 2017, -652 с.
- 4. Гонсалес Р., Вудс Р. Цифровая обработка изображений.: Пер. с англ. М.: Техносфера, 2006. 1070 с.
- 5. Шапиро Л., Стокман Дж. Компьютерное зрение: Пер. с англ. М.: БИНОМ. Лаборатория знаний, 2006. 752 с.
- 6. Hastie, Tibshirani and Friedman. The Elements of Statistical Learning. SpringerVerlag, 2009. 763
 - 7. pages. http://statweb.stanford.edu/~tibs/ElemStatLearn/
- 8. Саймон Хайкин. Нейронные сети. Полный курс. 2-е изд., испр.: Пер. с англ. М.: OOO «И. Д. Вильямс», 2006. 1104 с.
 - 9. Чак Лэм. Наdoop в действии. М: ДМК Пресс. 2012, 424с.
- 10. X. Карау, Э. Конвински, П.Венделл, М. Захария. Изучаем Spark. Молниеносный анализ данных. М: ДМК Пресс. 2015, 304с.
 - 11. Крылов А. С., Насонов А. В. Регуляризирующие методы интерполяции

Магистерская программа

"Компьютерные методы в математической физике, обратных задачах и обработке изображений"

- 1. Обобщенное решение задачи Дирихле для уравнения второго порядка эллиптического типа.
- 2. Метод Ритца приближенного решения эллиптического уравнения второго порядка.
- 3. Вариационная постановка задачи на собственные значения симметричного положительного операторного уравнения.
- 4. Метод Ритца в проблеме вычисления собственных значений задачи Дирихле.
- 5. Метод конечных элементов для обыкновенного дифференциального уравнения.
- 6. Метод конечных элементов для задачи об изгибе упругого бруса.
- 7. Матрица жесткости и матрица массы линейного конечного элемента.
- 8. Теорема о сходимости метода конечных элементов на линейных треугольниках в случае уравнения Пуассона.
- 9. Вывод уравнения Кортевега-де Фриза.
- 10. Групповой анализ обыкновенных дифференциальных уравнений первого и второго порядка.
- 11. Групповой анализ для уравнения теплопроводности.
- 12. Уравнение Бюргерса и его линеаризация.
- 13. Метод кусочно-постоянных аппроксимаций решения интегральных уравнений Фредгольма 2-го рода.
- 14. Метод конечных элементов решения интегральных уравнений Фредгольма 2-го рода.
- 15. Метод решения сингулярного интегрального уравнения с ядром Гильберта на основе квадратурных формул интерполяционного типа.
- 16. Численное решение интегральных уравнений Фредгольма 2-го рода в случае неоднозначной разрешимости соответствующего однородного уравнения.
- 17. Методы организации параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 18. Суперкомпьютерное моделирование турбулентных течений.
- 19. Использование суперкомпьютеров для решения задач молекулярного моделирования.
- 20. Методы эффективной организации параллельных вычислений на графических процессорах.
- 21. Matlab. Матрицы: способы задания, матричные операции. Визуализация решений.
- 22. Matlab. Обработка изображений.
- 23. Марle. Символьные вычисления. Дифференцирование и интегрирование.
- 24. Решение систем обыкновенных дифференциальных уравнений с помощью языка Python.
- 25. Решение задач для уравнений математической физики методом конечных элементов с помощью языка Python.
- 26. Фильтры Габора, примеры их применения.
- 27. Полная вариация изображений. Ее связь с характеристиками изображений.
- 28. Линейные методы повышения разрешения изображений.
- 29. Преобразование Хафа для нахождения прямых линий на изображениях.
- 30. Диффузионная фильтрация изображений.
- 31. Математические модели автоволновых процессов. Классификация автоволновых процессов.
- 32. Колебания в биологических системах и системах химических реакций.

- 33. Волны в системах с диффузией. Уравнение Колмогорова Фишера.
- 34. Бегущие волны в моделях теплопроводности и сорбции.
- 35. Регулярные и сингулярные возмущения дифференциальных уравнений.
- 36. Задача продолжения потенциального поля.
- 37. Обратная задача гравиметрии.
- 38. Определение источника тепла в начальной задаче на прямой.
- 39. Обратная задача электроразведки.
- 40. Обратная кинематическая задача сейсмики.

- 1. Михлин С.Г. Вариационные методы в математической физике. М.Наука, 1970.
- 2. Андреев В.Б. Лекции по методу конечных элементов. М.МАКС Пресс ,2015.
- 3. Ибрагимов Н.Х. Практический курс дифференциальных уравнений и математического моделирования. М. Физматлит, 2012.
- 4. Сетуха А.В. Численные методы в интегральных уравнениях и их приложения. М.АРГАМАК-МЕДИА, 2014.
- 5. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления СПб. БХВ-Петербург, 2002.
- 6. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А.Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов. М.: Издательство Московского университета, 2013.
- 7. Марри Дж. Нелинейные дифференциальные уравнения в биологии. М. Мир. 1983.
- 8. Яне Б. Цифровая обработка изображений. М. Техносфера. 2007.
- 9. Крылов А.С., Насонов А.В. Регуляризирующие методы интерполяции изображений. М. Аргамак-Медиа. 2014.
- 10. Денисов А.М. Введение в теорию обратных задач. М.Изд-во МГУ, 1994.
- 11. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск. Сибирское научное изд-во. 2009.
- 12. Ануфриев И., Смирнов А. , Смирнова Е. MATLAB 7. Наиболее полное руководство. СПб. БХВ-Петербург, 2005

Магистерская программа

"Логические и комбинаторные методы анализа данных"

- 13. Методы градиентного спуска и Ньютона для безусловной гладкой оптимизации. Стратегии выбора длины шага. Скорости сходимости методов.
- 14. Условия Каруша-Куна-Таккера для задач условной оптимизации. Двойственная задача оптимизации. Методы решения выпуклых условных задач с помощью метода Ньютона и метода логарифмических барьеров.
- 15. Понятие субградиента и субдифференциала, субдифференциальное исчисление. Субградиентный метод для решения негладких задач выпуклой оптимизации. Его скорость сходимости.
- 16. Проксимальный градиентный метод для минимизации композитных функций. Выбор длины шага. Скорость сходимости метода. Примеры применения.
- 17. Стохастический градиентный спуск, его скорость сходимости. Методы стохастической оптимизации с линейной скоростью сходимости: SAG и SVRG.
- 18. Функционалы качества и функции ошибки в задачах машинного обучения (примеры, способы минимизации, оптимальные решения в классе констант)
- 19. Основы теории нечётких множеств (определения, операции, Т-нормы, выпуклые множества, оценка нечёткости, нечёткие отношения, принцип обобщения)
- 20. Анализ социальных сетей (безмасштабные сети, модель малого мира, коэффициент кластеризации, важность-центральность вершины, PageRank, определение вероятности появления ребра, нахождение сообществ в графе)
- 21. Случайные леса и бустинг над деревьями (описание алгоритмов, современные реализации, настройка параметров, критерии расщепления)

- 22. Лемма Бёрнсайда. Цикловой индекс действия группы на множестве. Теорема Пойа (без доказательства). Применение циклового индекса и теоремы Пойа при решении комбинаторных задач.
- 23. Структурный подход в распознавании образов: составляющие и особенности подхода. Левенштейновская аппроксимация произвольного слова словом из регулярного языка. Лемма о порядке редакторских операций.
- 24. Основные процедуры голосования. Аксиомы Эрроу, теорема (парадокс) Эрроу (без доказательства).
- 25. Модель Эрдёша-Реньи случайных графов. Наблюдения Барабаши-Альберт. Модель интернета Боллобаша-Риордана.
- 26. Векторные представления слов. Модели Skip-gram и CBOW. Их модификации, основанные на иерархическом мягком максимуме и негативном семплировании.
- 27. Задача разметки последовательности (sequence labeling). Модель linear-CRF. Обучение модели и нахождение оптимальной последовательности меток. Совместное использование linear-CRF и нейросетевых архитектур.
- 28. Задача переноса обучения (transfer learning). Основные модели переноса обучения для текстовых данных: ELMO, ULMFIT и BERT.
- 29. Тематическое моделирование. Модель PLSA. Вывод решения через ЕМ-алгоритм.
- 30. Алгоритмическая рандомизация, задача вычисления порядковых статистик и медианы.
- 31. Алгоритм быстрого преобразования Фурье, приложение к цифровой обработке сигналов.
- 32. O(n log n) алгоритм вычисления пересечений конечного множества отрезков на плоскости.
- 33. Динамическое программирование, алгоритм выделения наибольшей общей подпоследовательности для двух последовательностей.
- 34. Шифрование с открытым ключом, цифровая подпись, протокол RSA.
- 35. Свёрточные нейронные сети. Основные используемые архитектуры. Решение задач семантической сегментации изображений и детекции объектов на изображениях.
- 36. Рекуррентные нейронные сети, основные архитектуры. Проблема затухающих и взрывающихся градиентов, методы борьбы с ней. Механизм внимания и его использование при решении задачи машинного перевода.
- 37. ЕМ-алгоритм для обучения вероятностных моделей со скрытыми переменными. Модель вариационного автокодировщика. Трюк репараметризации.
- 38. Обучение с подкреплением. Примеры практических задач. Q-обучение. Модель DQN.
- 39. Основная теорема Policy gradient. Алгоритмы Reinforce, A2C, DDPG.
- 40. Обучение с подкреплением с добавлением энтропии. Метод Soft Actor-Critic.

- 1. J. Nocedal, S.J. Wright. Numerical Optimization. Springer, 2006.
- 2. S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004.
- 3. D. Bertsekas. Convex Analysis and Optimization, Athena Scientific, 2003.
- 4. Optimization for Machine Learning. Edited by Suvrit Sra, Sebastian Nowozin and Stephen J. Wright, MIT Press, 2011.
- 5. M. Schmidt. Notes on Big-n Problems, 2012.
- 6. R. Johnson, T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction // NIPS, 2013.
- 7. M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient // ArXiv: 1309.2388, 2013.
- 8. Стрижов В.В. Функция ошибки в задачах восстановления регрессии // Заводская лаборатория, 2013, 79(5): 65-73.
- 9. К.Д. Маннинг, П. Рагхаван, Х. Шютце «Введение в информационный поиск» // . Вильямс, 2011.
- 10. Рыжов А.П. Элементы теории нечетких множеств и измерения нечеткости. Москва,

Диалог-МГУ, 1998, 116 с.

- 11. Ухоботов В. И. Избранные главы теории нечетких множеств // Учеб. пособие. Челябинск : Изд-во Челяб. гос. ун-та, 2011. 245 с.
- 12. D. Easley and J. Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World".
- 13. S. Fortunato. Community detection in graphs. Physics Reports, Vol. 486, pp. 75-174, 2010
- 14. И. Генрихов О критериях ветвления, используемых при синтезе решающих деревьев // Машинное обучение и анализ данных, 2014, Т.1, №8, С.988-1017
- 15. A. Natekin, A. Knoll Gradient boosting machines, a tutorial // Front Neurorobot. 2013; 7: 21.
- 16. Белов В. В., Воробьев Е. М., Шаталов В. Е. Теория графов. М.: Высшая школа, 1976.
- 17. Гуров С. И. Конспект лекций по курсу «Комбинаторные и логические методы анализа данных». Электронный ресурс [http://www.machinelearning.ru/wiki/index.php?title=Комбинаторные_и_логические_методы_ анализа данных %28курс лекций%2С С.И. Гуров%29
- 18. Левченков В. С. Новые методы теории выбора: Учебное пособие. М.: Издательский отдел ф-та ВМиК МГУ им. М.В. Ломоносова; МАКС Пресс, 2007.
- 19. Николенко С. Теория экономических механизмов. М.: Национальный Открытый Университет «ИНТУИТ». 2011.
- 20. Райгородский А. М. Модели Интернета: учебное пособие. Долгопрудный: Издательский дом «Интеллект», 2013.
- 21. Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. К.: Наукова думка, 2004. 545 с.
- 22. D. Jurafsky and J. H. Martin, Speech and Language Processing (3rd ed. draft), https://web.stanford.edu/~jurafsky/slp3/
- 23. T. Mikolov, K. Chen, G. Corrado, J. Dean, Distributed Representations of Words and Phrases and their Compositionality, https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
- 24. C. Sutton, A. MCallum, An introdution to Conditional Random Fields (2011), https://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
- 25. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural Architectures for Named Entity Recognition, https://arxiv.org/abs/1603.01360
- 26. M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations, https://arxiv.org/pdf/1802.05365.pdf
- 27. J. Howard, S. Ruder, Universal Language Model Fine-tuning for Text Classification, https://arxiv.org/abs/1801.06146
- 28. J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, https://arxiv.org/abs/1810.04805
- 29. T. Hofmann, Probabilistic latent semantic indexing, http://dataera.org/2014/04/notes-on-em-and-plsa/
- 30. Кормен Т.Х. и др. Алгоритмы: построение и анализ, 3-е изд., Москва, «И. Д. Вильямс», 2016. 1328 с.
- 31. Дасгупта С., Пападимитриу Х., Вазирани У. Алгоритмы. Москва, МЦНМО, 2014.
- 32. Препарата Ф., Шеймос М. Вычислительная геометрия: введение, Москва, «Мир». 1989. 478 с.
- 33. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning, MIT Press, 2016.
- 34. Abhishek Chaurasia, Eugenio Culurciello LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation, 2017. https://arxiv.org/abs/1707.03718
- 35. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks // ArXiv: 1506.01497, 2015.
- 36. Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate // ArXiv: 1409.0473, 2014.
- 37. Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes, 2013. https://arxiv.org/abs/1312.6114

- 38. R. Sutton, A. Barto. Reinforcement Learning: An Introduction, 2nd ed., 2018.
- 39. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013. https://arxiv.org/abs/1312.5602
- 40. Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning, 2016. https://arxiv.org/abs/1602.01783
- 41. Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra. Continuous control with deep reinforcement learning, 2015. https://arxiv.org/abs/1509.02971
- 42. Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, 2018. https://arxiv.org/abs/1801.01290

Магистерская программа "Математические методы моделирования и методы оптимизации управляемых процессов"

- 1.Обратные задачи, связанные с динамическими системами, описываемыми обыкновенными дифференциальными уравнениями. Метод динамической регуляризации для задачи восстановления характеристик систем обыкновенных дифференциальных уравнений.
- 2. Обратные задачи, связанные с динамическими системами, описываемыми уравнениями с частными производными. Метод динамической регуляризации для задач восстановления характеристик параболических уравнений.
- 3. Обратные задачи, связанные с динамическими системами, описываемыми уравнениями с частными производными. Метод динамической регуляризации для задач восстановления характеристик гиперболических уравнений.
- 4. Одномерная модель Рамсея на бесконечном горизонте планирования с производственной функцией в форме Кобба Дугласа. Задача о наилучших пропорциях производства и потребления. Особый режим. Качественный характер решения
- 5. Двумерная задача распределения ресурсов в двухсекторной экономической модели с производственной функцией Кобба Дугласа на конечном отрезке времени с максимизацией второй фазовой координаты в конечный момент времени. Особый режим. Качественный характер решения.
- 6. Принцип максимума Понтрягина для задач на бесконечном интервале времени (общий случай). Основные соотношения принципа максимума. Условия трансверсальности на бесконечности.
- 7. Метод динамического программирования Беллмана и принцип максимума Понтрягина для задач на бесконечном интервале времени. Текущие сопряженные переменные. Экономический смысл соотношений принципа максимума.
- 8. Достаточные условия оптимальности для задач на бесконечном интервале времени.
- 9.Введение в геометрическую теорию управления: гладкие многообразия, обыкновенные дифференциальные уравнения, векторные поля, коммутаторы, алгебра Ли векторных полей. Условие скобочной порождаемости для систем линейных по управлению.
- 10.Понятие сопряженной точки. Досточные условия слабого минимума в классической задаче вариационного исчисления.
- 11.Особые траектории. Метод построения особых управлений.

- 12.Постановка задач граничного управления и наблюдения для волнового уравнения. Выбор функциональных пространств. Двойственность. Свойства управляемости и наблюдаемости и их связь с критическим моментом времени.
- 13. Неравенство наблюдаемости как критерий управляемости и наблюдаемости. Истокопредставимость нормальных решений задач управления и наблюдения при наличии неравенства наблюдаемости. Описание вариационного метода решения линейных операторных уравнений: условия применимости, алгоритм, сходимость.
- 14.Вывод неравенства наблюдаемости для простейшего уравнения колебаний однородной струны. Реализация вариационного метода: конструкции конечномерных взаимно сопряжённых приближений к операторам управления и наблюдения; схема решения конечномерной задачи квадратичной минимизации.
- 15. Обобщенная производная по Соболеву. Пространства Соболева. Теоремы вложения.
- 16.Постановка задачи об оптимальном нагреве стержня. Существование и единственность обобщенного решения краевой задачи. Теорема Вейерштраса.
- 17. Градиент целевого функционала в задаче о нагреве стержня. Критерий оптимальности. Регуляризованный метод проекции градиента.
- 18.Условия существования и явный вид ситуации равновесия по Нэшу в дифференциальной линейно-квадратичной дифференциальной игре трех лиц.
- 19. Условия существования и явный вид ситуации равновесия по Бержу в дифференциальной линейно-квадратичной игре двух лиц с малым влиянием одного из игроков на скорость изменения фазового вектора.
- 20. Максимум по Парето в двухкритериальной линейно-квадратичной динамической задаче.
- 21. Необходимые и достаточные условия существования стратегий с нулевым риском.
- 22. Гарантированное по Парето равновесие в многошаговом варианте дуополии Курно с учетом импорта.
- 23. Гарантированное по выигрышам и рискам равновесие в линейно-квадратичной игре двух лиц.
- 24. Математические модели технического прогресса (экзогенный и эндогенный прогресс). Задачи оптимизации и подходы к решению.
- 25. Математические модели оптимальной добычи невозобновляемых ресурсов.

Задачи оптимизации и подходы к решению.

- 26. Интегрированные модели климата и экономики. Модель DICE. Задачи оптимизации и подходы к решению.
- 27. Неантагонистические дифференциальные игры. Равновесие по Нэшу в программных и позиционных стратегиях.
- 28. Дифференциальные игры с бесконечной продолжительностью. Равновесие по Нэшу в программных и позиционных стратегиях.
- 29. Модель конкурентной рекламы с двумя участниками.

Список рекомендованной литературы Основная

- 1. Понтрягин Л.С., Болтянский В.Г. Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М. Наука. 1961. 392 с.
- 2. 2.Осипов Ю.С., Васильев Ф.П., Потапов М.М. Основы метода динамической регуляризации. М.: Изд-во Моск. университета, 1999. 237 с.
- 3. Кряжимский А.В., Осипов Ю.С. О моделировании управления в динамической системе. Изв. АН СССР. Сер. техн. киберн. 1983, №2, С. 51-60.

- 4. 4.Осипов Ю.С., Кряжимский А.В., Максимов В.И. Задачи динамической регуляризации для систем с распределенными параметрами. Изд-во Ин-та матем. и механ. УрО АН СССР. Свердловск, 1991.
- 5. Асеев С.М., Кряжимский А.В. Принцип максимума Понтрягина и задачи оптимального экономического роста. Труды МИАН, т. 257, стр. 5-251, 2007.
- 6. Aseev S.M., Infinite-Horizon Optimal Control with Applications in Growth Theory, M:
- 7. MAKC Пресс, 2009.
- 8. 7.Seierstad A. and Syds^ter K, Optimal Control Theory with Economic Applications,
- 9. North-Holland, 1987.
- 10. 8.Зеликин М.И., Оптимальное управление и вариационное исчисление, УРСС, Москва, 2004.
- 11. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. М.: Наука. 2005.
- 12. Васильев Ф.П., Куржанский М.А., Потапов М.М., Разгулин А.В. Приближенное решение двойственных задач управления и наблюдения. М.: МАКС Пресс, 2010.
- 13. Васильев Ф.П. Методы оптимизации. В 2 томах. М.: МЦНМО. 2011.
- 14. Ашманов С.А. Математические модели и методы в экономике. М. МГУ. 1980. 190 с.
- 15. Киселев Ю.Н. Метод динамического программирования для непрерывных управляемых систем. booksee.org/book/46840 (33 с.)
- 16. Жуковский В.И., Чикрий А.А. Линейно-квадратичные дифференциальные игры. Киев: Наукова Думка, 1994 г.
- 17. Жуковский В.И., Кудрявцев К.Н., Смирнова Л.В. Гарантированные решения конфликтов и их приложения. М.:УРСС, КРАСАНД, 2013.
- 18. Жуковский В.И., Кудрявцев К.Н. Уравновешивание конфликтов и приложение. М.:УРСС, ЛЕНАНД,2012.

Дополнительная

- 1. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986.
- 2. Колмогоров А.Н. Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976.
- 3. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М.: Наука, 1979.
- 4. Избранные труда В.А.Ильина. Т. 2. М.: МАКС Пресс, 2008.
- 5. Lions J.L. Exact controllability, stabilization and perturbations for distributed systems // SIAM Rev. 1988. V. 30. No. 1. P. 1 68.
- 6. Жуковский В.И., Дончев Д.Т. Векторная оптимизация динамических систем. Болгария, Русе: ВТУ им. А.Кынчев, 1981.
- 7. Жуковский В.И., Тынянский Н.Т. Равновесные управления многокритериальных динамических систем. М.:МГУ,1984.
- 8. Болтянский В.Г. Оптимальное управление дискретными системами. М.: Наука,1973. Пропой А.И. Элементы теории оптимальных дискретных процессов. М.: Наука,1973.
- 9. Hritonenko N., Yatsenko Yu. Mathematical Modeling in Economics, Ecology and the Environment, Springer (2013)
- 10. Barro R.J., Sala-i-Martin X. Economic Growth. The MIT Press, Cambridge, MA (2003)
- 11. Nordhaus W.D. Managing the Global Commons: The Economics of Climate Change, The MIT Press, Cambridge, MA (1994)
- 12. Nordhaus W.D., Sztorc P. DICE 2013R: Introduction and User's Manual, http://www.econ.yale.edu/~nordhaus/homepage/documents/DICE_Manual_103113r2.pdf

Магистерская программа

"Математические методы системного анализа, динамики и управления"

- 1. Задача синтеза управлений с критерием Майера-Больца. Вывод соответствующего уравнения Гамильтона-Якоби-Беллмана.
- 2. Линейно-квадратичные задачи управления и оценивания на конечном интервале.
- 3. Задача достижимости для линейно-выпуклой системы управления. Прямые и попятные области достижимости. Синтез управлений.

- 4. Задача оптимального управления при ограничениях на фазовые координаты. Достижимость. Синтез управлений.
- 5. Принцип максимума Л.С. Понтрягина. Линейные системы.
- 6. Принцип максимума Л.С. Понтрягина. Нелинейные системы.
- 7. Задача коррекции движений при неопределённости. Альтернированный интеграл Понтрягина.
- 8. Синтез управлений при неопределённости для линейных систем. Уравнение Гамильтона-Якоби-Беллмана-Айзекса для систем общего вида.
- 9. Принцип сравнения для уравнения Гамильтона-Якоби-Беллмана общего вида.
- 10. Задача импульсного управления в линейных системах. Теорема о числе импульсов. Синтез импульсных управлений.
- 11. Задача синтеза управлений по результатам наблюдений в линейных системах, на конечном интервале.
- 12. Теоремы о минимаксе и о дифференцировании функции максимума.
- 13. Отделимость выпуклых множеств в конечномерных пространствах.
- 14. Выпуклые множества в конечномерных пространствах. Выпуклая оболочка и теорема Каратеодори. Относительная внутренность выпуклых множеств.
- 15. Математические модели "хищник жертва" (принцип Вольтерра) и модель конкурирующих видов. Модель пищевой цепи.
- 16. Бифуркация Андронова-Хопфа рождения цикла. Возникновение предельного цикла в модели "хищник жертва" Г. Гаузе.
- 17. Вывод уравнения Фишера Колмогорова. Его волновые решения.
- 18. Теорема Брауэра и неравенство Фань Цзы.
- 19. Конкурентное равновесие в модели Эрроу-Дебре. Теорема Эрроу-Дебре о существовании конкурентного равновесия. Первая теорема теории благосостояния.
- 20. Теория мажоризации.
- 21. Оптимальный моменты остановки для задачи с конечным горизонтом, уравнения Беллмана и критерий оптимальности. Применение к ценообразованию и хеджированию опционов американского типа для модели полного рынка.
- 22. Гарантированный подход к ценообразованию и хеджированию опционов американского типа, уравнения Беллмана-Айзекса. Игровое равновесие, интерпретация риск-нейтральной вероятности.
- 23. Стабилизация линейных стационарных систем. Стабилизация по состоянию и по результатам измерений.
- 24. Задача оптимальной стабилизации в общем, нелинейном случае. Уравнение для функции Ляпунова (функции цены), его решение в случае линейно-квадратичной задачи.
- 25. Уравнение атмосферной диффузии в одномерном случае. Вывод сопряженного уравнения и примеры его применения.
- 26. Наблюдаемость систем с распределенными параметрами. Наблюдаемость системы с движущимся точечным сенсором на прямой.
- 27. Постановка задачи регуляризации. Метод квазиобращения Лионса-Латтеса.
- 28. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 29. Методы организации параллельных вычислений при суперкомпьютерном решении сеточных залач.
- 30. Суперкомпьютерное моделирование турбулентных течений.
- 31. Использование суперкомпьютеров для решения задач молекулярного моделирования.

- 1. Куржанский А.Б. Управление и наблюдение в условиях неопределенности. М.: Наука, 1977.
- 2. Kurzhanski A.B., Varaiya P. Dynamics and Control of Trajectory Tubes. Theory and Computation. Birkhauser, 2014.
- 3. Куржанский А.Б., Мельников Н.Б. О задаче синтеза управлений: альтернированный интеграл Понтрягина и уравнение Гамильтона-Якоби // Математический сборник, т. 191, №

- 6, 2000, стр. 69-100.
- 4. Пшеничный Б.Н. Выпуклый анализ и экстремальные задачи. М.: Наука, 1980.
- 5. Ли Э., Маркус Л. Основы теории оптимального управления. М., Наука, 1972.
- 6. Благодатских В.И. Линейная теория оптимального управления. М., Издательство Московского университета. 1978.
- 7. Арутюнов А.В. Лекции по выпуклому и многозначному анализу. М.: Физматлит, 2014.
- 8. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии. Москва, Физматлит, 2010.
- 9. Экланд И. Элементы математической экономики. М., Мир, 1983.
- 10. Никайдо Х. Выпуклые структуры и математическая экономика. М.: Мир, 1972.
- 11. Петров А.А., Поспелов И.Г., Шананин А.А. Опыт математического моделирования экономики. М.: Энергоатомиздат, 1996.
- 12. Ширяев А.Н. Основы стохастической финансовой математики. тт. 1-2. М.: Фазис, 2004.
- 13. Красовский Н. Н. Некоторые задачи теории устойчивости движения. М.: Физматгиз, 1959.
- 14. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.
- 15. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: Едиториал УРСС, 2010.
- 16. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М., Наука, 1986 г.
- 17. Латтес Р., Лионс Ж.-Л. Метод квазиобращения и его приложения. М., Мир, 1970г.

Магистерская программа "Распределенные системы и компьютерные сети"

- 1. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 2. Архитектурные особенности графических процессоров, направленные на массивнопараллельные вычисления. Методы эффективной организации параллельных вычислений на графических процессорах.
- 3. Основные принципы организации оптических и беспроводных систем передачи данных.
- 4. Сети хранения данных архитектура и основные сервисы.
- 5. Принципы организации и основные достоинства MPLS технологии.
- 6. Программно-конфигурируемые сети (SDN). Основные принципы, архитектура и преимущества. Протокол OpenFlow. Структура OpenFlow контроллера и коммутатора. Примеры применения.
- 7. Виртуализация сетевых сервисов (NFV). Основные принципы, этапы развития, архитектура, преимущества. Примеры применения.
- 8. Качество сервиса в компьютерных сетях: модели распределения ресурсов сети и методы борьбы с перегрузками.
- 9. Основные подходы математического моделирования компьютерных сетей. Прототипирование компьютерных сетей: преимущества, недостатки, ограничения применимости.
- 10. Динамическое планирование задач в ИУС РВ. Схемы планирования Rate Monotonic (фиксированные приоритеты) и Earliest Deadline First (динамические приоритеты). Оценка времени отклика задач для схемы Rate Monotonic.
- 11. Понятие наихудшего времени выполнения программы (WCET). Факторы, влияющие на WCET. Фазы анализа WCET. Использование абстрактной интерпретации для выявления недопустимых путей. Анализ влияния конвейера на время выполнения программы.

- 12. Архитектура интегрированной модульной авионики (ИМА), её основные преимущества, примеры типов модулей (шина VME). Статико-динамическая схема планирования вычислений в системах ИМА.
- 13. V-образный жизненный цикл (ЖЦ) программного обеспечения. Основные виды инструментальных средств поддержки ЖЦ, их отнесение к фазам ЖЦ. Структура комплекса стендов для поэтапной интеграции ПО и аппаратуры ИУС РВ на восходящей фазе ЖЦ.
- 14. Средние и эмпирические операционные характеристики стратегий распознавания (классификаторов, регрессий). Проблема переобучения. Проблема устойчивости решений. Роль обучающей, валидационной и контрольной выборок при построении распознающей системы. Скользящий контроль (кросс-валидация). Регуляризация на примере линейной регрессии.
- 15. Ансамбли классификаторов. Основные этапы работы типичного базового классификатора, возможность коррекции на разных этапах. Бэггинг и случайные подпространства. Бустинг. Случайный лес как композиция основных подходов к построению ансамбля.
- 16. Задача кластеризации как фундаментальная задача интеллектуального анализа данных, сопоставление с операцией группирования и задачей классификации. Различные постановки: разбиение, стохастическая, нечёткая, иерархическая, упорядочивание, однокластерная (последовательная). Примеры методов кластеризации для разных постановок.
- 17. Дискреционные управление доступом. Модели HRU и Take-Grant. Задача проверки безопасности системы защиты от НСД.
- 18. Методы аутентификации в сети. Протокол аутентификации Kerberos.
- 19. Пасивные и активные сетевые атаки (снифинг, спуфинг, МІТМ, имперсонация).
- 20. Коммуникационные протоколы. Ошибки, возникающие при передаче сообщений. Задача надежного обмена сообщениями. Симметричные протокол скользящего (раздвижного) окна: устройство протокола и обоснование его корректности. Протокол альтернирующего бита.[1, стр. 83-94]
- 21. Задача маршрутизации. Алгоритм Флойда-Уоршалла построения кратчайших путей в графе. Алгоритм маршрутизации Туэга: описание алгоритма, обоснование его корректностии оценка сложности по числу обменов сообщениями.[1, стр. 113-128]
- 22. Общие принципы дедуктивной верификации программ. Операционная семантика императивных программ. Формальная постановка задачи верификации программ. Логика Хоара: правила вывода и свойства. Автоматизация проверки правильности программ. [4, с. 4770]
- 23. Темпоральная логика деревьев вычислений СТL. Синтаксис и семантика СТL. Примеры спецификаций моделей в терминах формул СТL. Темпоральная логика линейного времени PLTL. Синтаксис и семантика PLTL. Свойства живости и безопасности. Ограничения справедливости. Задача верификации моделей (model-checking).[2, с. 55-63]
- 24. Временные автоматы как формальные модели распределенных систем реального времени. Вычисления временных автоматов. Примеры использования временных автоматов для моделирования встроенных систем. Зеноновские вычисления. Синтаксис и семантика Timed CTL. Задача верификации моделей программ реального времени. Программно-инструментальное средство верификации моделей программ реального времени UPPAAL. [2, 344-353]
- 25. Дискретные цепи Маркова. Метод вложенных цепей Маркова при исследовании систем массового обслуживания.
- 26. Процессы гибели и рождения. Исследование марковских систем обслуживания с помощью теории процессов гибели и рождения.
- 27. Понятие антагонистической игры. Верхнее и нижнее значения конечных и бесконечных антагонистических игр. Седловая точка. Необходимые и достаточные условия существования седловой точки. Теорема Фон Неймана о существовании седловой точки у вогнуто-выпуклых функций

- 28. Понятие потока в сети. Задача о максимальном потоке. Алгоритмы Форда-Фалкерсона и Карзанова. Теорема о максимальном потоке и минимальном разрезе. Сведение задачи составления допустимого расписания с прерываниями для многопроцессорной системы при заданных директивных интервалах к задаче о максимальном потоке в сети.
- 29. Псевдополиномиальные алгоритмы решения задач: разбиение, рюкзак, расписание для многопроцессорной системы (число процессоров фиксировано).
- 30. Метод ветвей и границ на примере минимаксной задачи теории расписаний Приближенные алгоритмы решения NP-трудных задач: упаковка в контейнеры, рюкзак, коммивояжер, расписание для многопроцессорной системы, вершинное покрытие. Оценки их сложности и погрешности.

- 1. Ж. Тель. Введение в распределенные алгоритмы, изд-во МЦНМО, 2009 г., 616 с.
- 2. Э.М. Кларк, О. Грамберг, Д. Пелед. Верификация моделей программ: ModelChecking. Изд-во МЦНМО, 2002. 417 с.
- 3. Ю.Г. Карпов. ModelChecking: верификация параллельных и распределенных программных систем. Изд-во БХВ-Петербург, 2010.
- 4. K. R. Apt, E.-R. Olderog. Verification of sequential and concurrent programs, Springer, 1997, 365 p.
- 5. Смелянский Р. Л. Компьютерные сети: в 2 т. т.1 Системы передачи данных. Издательский центр "Академия" г. Москва, 2011. С. 304.
- 6. Смелянский Р. Л. Компьютерные сети: в 2 т. т.2. Сети ЭВМ. Издательский центр "Академия" г.Москва, 2011. С. 240.
- 7. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. 6 издание. М.: URSS, 2013.
- 8. Матвеев В.Ф., Ушаков В.Г. Системы массового обслуживания. М.: изд-во Московского ун-та, 1984.
- 9. Карлин С. Основы теории случайных процессов. М.: Мир, 1971.
- 10. Ивченко Г.И., Медведев Ю.И. Математическая статистика. М., Высшая школа, 1984.
- 11. Давыдов Э.Г. Исследование операций. М.: Высшая школа, 1990.
- 12. Морозов В.В. Основы теории игр. М.: МГУ, 2002.
- 13. Кормен Т., Лейзерсон Ч., Ривест Р, Штайн К. Алгоритмы. Построение и анализ. М.: МЦНМО, 2005.
- 14. Танаев В.С., Гордон В.С., Шафранский Я.М. Теория расписаний. Одностадийные системы. М.: Наука, 1984.
- 15. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. М.: Мир, 1985.
- 16. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.

Магистерская программа

"Современные методы математического моделирования"

- 1. Поколения архитектур компьютеров и парадигмы программирования.
- 2. Архитектурные особенности современных микропроцессоров.
- 3. Программно-аппаратная архитектура суперкомпьютеров Ломоносов и Blue Gene/P.
- 4. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 5. Математическая модель денежных накоплений в постановке стохастического ОДУ
- 6. Методы организация параллельных вычислений при суперкомпьютерном решении сеточных задач. Примеры.
- 7. Постановка основных задач для уравнения плотности ценных бумаг (акций).
- 8. Уравнение Колмогорова марковских случайных процессов. Постановка

определяющих задач для уравнения Колмогорова

- 9. Метод Ритца приближенного решения эллиптического уравнения второго порядка.
- 10. Вариационная постановка задачи на собственные значения симметричного положительного операторного уравнения.
- 11. Аналитическое решение задачи Коши модельного уравнения параболического типа динамики плотности ценных бумаг (акций).
- 12. Вариационная постановка задачи на собственные значения для численного решения стационарного уравнения Шредингера. Зависимость сложности вычислений от числа базисных функций.
- 13. Производственные функции. Примеры математических моделей макроэкономической динамики.
- 14. Задачи для нелинейных уравнений, методы численного решения.
- 15. Одномерный марковский случайный процесс. Условия сильной непрерывности марковского случайного процесса.
- 16. Метод конечных элементов решения интегральных уравнений Фредгольма 2-го рода.
- 17. Производственные функции. Примеры моделей макроэкономической динамики.
- 18. Метод решения сингулярного интегрального уравнения с ядром Гильберта на основе квадратурных формул интерполяционного типа.
- 19. Метод молекулярной динамики.
- 20. Развитие кодов квантовой молекулярной динамики для моделирования экспериментальных эффектов в области нанотехнологий.
- 21. Суперкомпьютерные коды квантовой молекулярной динамики в области биологии.
- 22. Моделирование структуры протеинов.
- 23. Масштабируемость кодов квантовой молекулярной динамики на основе теории функционала плотности в зависимости от количества атомов.
- 24. Математическая модель динамики плотности ценных бумаг (акций) в пространстве цен.
- 25. Математическое моделирование динамики сосуществования различных групп населения в рамках нелинейной пространственной экономики.
- 26. Архитектурные особенности графических процессоров, направленные на массивно-параллельные вычисления
- 27. Математические модели защиты атомных реакторов на основе методов Монте-Карло.
- 28. Методы эффективной организации параллельных вычислений на графических процессорах
- 29. Использование метода Монте-Карло для математического моделирования процессов в плазме.
- 30. Архитектурные особенности центрального и графического процессоров.
- 31. Математические модели теории потребления. Уравнение Слуцкого.
- 32. Достижение максимальной производительности графического процессора.
- 33. Суперкомпьютерное моделирование турбулентных течений.
- 34. Математические модели транспортных потоков в мегаполисах.
- 35. Модели равновесия плазмы, основанные на уравнении Грэда-Шафранова.
- 36. Моделирование стохастических циклов и равновесий в модели экономической динамики Гудвина.
- 37. Численные алгоритмы решения уравнения равновесия плазмы Грэда-Шафранова.
- 38. Простейшая математическая модель теории потребления. Уравнение Слуцкого. Задание дополнительных начально-краевых условий для уравнения Слуцкого теории потребления и их интерпретация.
- 39. Понятие опциона. Основные виды опционов. Математические модели ценообразования на фондовых рынках. Модель ценообразования опционов Блэка-Шоулза.
- 40. Основные модели транспортных потоков: гидродинамические модели, стохастические модели, микроскопические модели. Транспортные заторы.

Список рекомендованной литературы

1. А.М. Попов. Вычислительные нанотехнологии. - М.: КНОРУС, 2014 - 314с. ISBN 978-5406-

- 00560-6, монография с грифом.
- 2. Воеводин В.В., Воеводин Вл.В. <u>Параллельные вычисления</u>. СПб.: БХВ-Петербург, 2002. 608 с.
- 3. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов./М.: Издательство Московского университета, 2013, 472 с.
- 4. Якобовский М.В. Введение в параллельные методы решения задач: Учебное пособие . М.: Издательство Московского университета, 2012. 328 с.
- 5. Антонов А.С. Технологии параллельного программирования MPI и OpenMP: Учеб. пособие. М.: Издательство Московского университета, 2012.-344 с.-(Серия "Суперкомпьютерное образование"). ISBN 978-5-211-06343
- 6. А. В. Боресков и др. Параллельные вычисления на GPU. Архитектура и программная модель CUDA: Учебное пособие.-Издательство Московского университета, 2012, 336 стр.
- 7. *Интернет ресурсы*: http://AlgoWiki-Project.org www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
- 8. W.Andreoni and A.Curioni New Advances in Chemistry and Materials Science with CPMD and Parallel Computing. *Parallel Computing*, **26**,819-842(2000)
- 9. D. Marx, J. Hutter, Ab initio molecular dynamics: Theory and Implementation
- 10. www.cpmd.org
- 11. Ерофеенко В.Т., Козловская И.С. Уравнения с частными производными и математические модели в экономике: курс лекций (2-е изд.). М.: Изд-во «УРСС», 2004.
- 12. Романовский М.Ю., Романовский Ю.М. Введение в эконофизику. Статистические и динамические модели. Москва, Ижевск: Изд-во «РХД», 2007

Магистерская программа

"Спектральная теория дифференциальных операторов и управление распределенными системами"

Общая часть

- 1. Обобщенное решение задачи Дирихле для уравнения второго порядка эллиптического типа.
- 2. Метод Ритца приближенного решения эллиптического уравнения второго порядка.
- 3. Вариационная постановка задачи на собственные значения симметричного положительного операторного уравнения.
- 4. Метод Ритца в проблеме вычисления собственных значений задачи Дирихле.
- 5. Метод конечных элементов для обыкновенного дифференциального уравнения.
- 6. Метод конечных элементов для задачи об изгибе упругого бруса.
- 7. Матрица жесткости и матрица массы линейного конечного элемента.
- 8. Теорема о сходимости метода конечных элементов на линейных треугольниках в случае уравнения Пуассона.
- 9. Вывод уравнения Кортевега-де Фриза.
- 10. Групповой анализ обыкновенных дифференциальных уравнений первого и второго порядка.
- 11. Групповой анализ для уравнения теплопроводности.
- 12. Уравнение Бюргерса и его линеаризация.
- 13. Методы организации параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 14. Суперкомпьютерное моделирование турбулентных течений.
- 15. Использование суперкомпьютеров для решения задач молекулярного моделирования.
- 16. Методы эффективной организации параллельных вычислений на графических процессорах

- 1. Михлин С.Г. Вариационные методы в математической физике. М. Наука, 1970.
- 2. Андреев В.Б. Лекции по методу конечных элементов. М.МАКС Пресс ,2015.

- 3. Ибрагимов Н.Х. Практический курс дифференциальных уравнений и математического моделирования. М. Физматлит, 2012.
- 4. Сетуха А.В. Численные методы в интегральных уравнениях и их приложения. М.АРГАМАК-МЕДИА, 2014.
- 5. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления СПб. БХВ-Петербург, 2002.
- 6. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А.Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов. М.: Издательство Московского университета, 2013. Специальная часть
- 7. Формула среднего значения для решений уравнения Гельмгольца.
- 8. Оценка пачки собственных функций оператора Лапласа.
- 9. Свойства фундаментальной системы функций оператора Лапласа и последовательности собственных значений.
- 10. Вариационный принцип собственных значений и собственных функций. Неравенство Фридрихса, точное значение постоянной.
- 11. Самосопряженность оператора Шрёдингера. Примеры существенно самосопряженных операторов.
- 12. Разложение функций из класса Соболева целого порядка в ряд Фурье по собственным функциям оператора Лапласа.
- 13. Обоснование применимости метода Фурье для решений смешанных краевых задач для гиперболических уравнений в пространстве Соболева.
- 14. Краевые задачи Трикоми, Франкля и Геллерстедта для уравнения Лаврентьева-Бицадзе.
- 15. Спектральный метод решения задачи Трикоми для уравнения Лаврентьева-Бицадзе.
- 16. Интеграл типа Коши, формулы Сохоцкого-Племеля.
- 17. Фазово-частотное представление сигнала.
- 18. Вейвлеты и разбиение пространств, ортогональный вейвлет-базис. Проективное разложение.
- 19. Точность и гладкость вейвлет-представления. Алгоритм пирамиды Маллата.
- 20. Задачи граничного управления для колебательных систем: постановки задач и методы решения.
- 21. Кривая в пространстве (кривизна, кручение).
- 22. Поверхность в пространстве (первая квадратичная форма, измерения на поверхности, характеристики кривизны).

- 1. Блаттер К. Вейвлет-анализ. Основы теории. Мир математики, 2004.
- 2. Чуи К. Введение в вейвлеты. М.: Мир, 2001.
- 3. Mertins, Alfred/ Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications. John Wiley, 1999.
- 4. Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными. М., 1972.
- 5. Ильин В.А. Избранные труды в 2-х томах. М.: МАКС-Пресс, 2008.
- 6. Радыно Я.В. Лекции о спектральной теореме: курс лекций. Минск, БГУ, 2002.
- 7. Davies E.B. Spectral Theory and Differential Operators. Cambridge University Press, 1995.
- 8. Ильин В.А. Спектральная теория дифференциальных операторов. М.: Наука, 1991.
- 9. Бицадзе А.В. Некоторые классы уравнений уравнений в частных производных. М.: Наука, 1981.
- 10. Смирнов М.М. Уравнения смешанного типа. М.: Высшая школа, 1985.
- 11. Гахов Ф.Д. Краевые задачи. М.: Наука, 1977.
- 12. Позняк Э.Г., Шикин Е.В. Дифференциальная геометрия. Первое знакомство. М.: Издво МГУ, 1990.
- 13. Голованов Н.Н., Ильютко Д.П., Носовский Г.Н., Фоменко А.Т. Компьютерная геометрия. М.: Академия, 2006.

Магистерская программа

"Статистический анализ и прогнозирование рисков"

- 1. Линейная регрессионная модель. Метод наименьших квадратов. Основные свойства оценок метода наименьших квадратов.
- 2. Проверка линейных гипотез в рамках классической модели регрессии.
- 3. Дискретные модели выбора.
- 4. Дискриминантный анализ: постановка задачи и ее решение в случае известных параметров.
- 5. Кластерный анализ: постановка задачи и основные понятия.
- 6. Функция полезности и ее свойства.
- 7. Многомерное нормальное распределение и его основные свойства.
- 8. Общие принципы выбора страховых тарифов и тарифных ставок.
- 9. Асимптотическая формула для страховых тарифов в статической модели страхования: сравнение классической и факторизационной модели.
- 10. Гарантированные оценки страховых тарифов для факторизационной модели страхования при пуассоновском объеме портфеля.
- 11. Спектральный анализ временных рядов. Периодограмма выборочная. Свойства периодограммы. Сглаженная периодограмма.
- 12. Линейная ARMA(p,q) модель временных рядов. Стационарность, обратимость. Автокорреляционная и частная автокорреляционная функции. Оценивание параметров. Прогнозирование.
- 13. Неравенства Берри-Эссеена, Осипова и Каца-Петрова.
- 14. Пуассоновские случайные суммы: определение, свойства, асимптотическая нормальность, аналог неравенства Берри-Эссеена
- 15. Геометрические и отрицательные биномиальные случайные суммы: определение, предельные теоремы и оценки скорости сходимости.
- 16. Преобразование Фурье и его свойства. Линейные фильтры. Теорема о свертке.
- 17. Кратномасштабный анализ. Алгоритмы разложения и реконструкции.
- 18. Пороговая обработка коэффициентов вейвлет-разложения. Методы выбора порога.
- 19. Модели прогнозирования на основе деревьев решений. Алгоритмы CHAID, CART, C4.5: критерии поиска разбиений, параметры ограничения роста и обрубания дерева.
- 20. Нейронные сети прямого распространения. Архитектуры MLP и RBF: структура сетей, виды функций активации, алгоритмы обучения, борьба с переобучением и с проблемой локальных минимумов.
- 21. Поиск ассоциативных правил. Алгоритмы Apriori и FP-tree: построение частых эпизодов с ограничением по поддержке и формирование правил с ограничением по достоверности.
- 22. Шаг обработки данных (data step) в языке программирования SAS Base. Общая схема функционирования, понятие PDV, опции и ограничения наборов данных (where, keep, drop, rename, end). Использование by-группировки и retain переменных для расчета агрегаций.
- 23. Применение процедуры SAS/STAT GLM для решения задач дисперсионного и регрессионного анализа: синтаксис, основные параметры. Отбор и группировка категориальных предикторов. Интерпретация результатов: основные статистики и графики.
- 24. Применение процедуры SAS/STAT LOGISTIC для решения задач бинарной и многоклассовой классификации: синтаксис, основные параметры. Пошаговые алгоритмы отбора переменных. Интерпретация результатов: основные статистики и графики.
- 25. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 26. Архитектурные особенности графических процессоров, направленные на массивно-параллельные вычисления.

Литература:

- 1. Андерсон Т. Введение в многомерный статистический анализ. М.: Наука, 1963.
- 2. Шеффе Г. Дисперсионный анализ. М.: Наука, 1980.
- 3. Hardle W., Simar L. Applied Multivariate Statistical Analysis. Springer-Verlag, 2003.

- 4. Johnson R.A. and Winchern D.W. Applied Multivariate Statistical Analysis. Pearson
- 5. Prentice Hall, 2007.
- 6. Факторный, дискриминантный и кластерный анализы. М.: Финансы и статистика,
- 7. 1989
- 8. Бауэрс Н., Гербер Х., Джонс Д., Несбитт С., Хикман Д., Актуарная математика. М.: Янус-К, 2001.
- 9. Себер Дж. Линейный регрессионный анализ. М.: Мир, 1980.
- 10. Дженкинс Г. Ваттс Д. Спектральный анализ и его приложения. М. Мир, 1972.
- 11. Бокс Дж., Дженкинс Г. Анализ временных рядов прогноз и управление. М. Мир, 1974.
- 12. Королев В.Ю., Бенинг В.Е., Шоргин С.Я. Математические основы теории риска. М.: Физматлит, 2011.
- 13. Петров В.В. Предельные теоремы для сумм независимых случайных величин. М.:
- 14. Наука, 1987.
- 15. Захарова Т.В., Шестаков О.В. Вейвлет-анализ и его приложения. 2-е изд., перераб. и доп. Учебное пособие. М.: ИНФРА-М. 2012.
- 16. Hastie, Tibshirani and Friedman. The Elements of Statistical Learning. Springer-Verlag,
- 17. 2009. 763 pages. http://statweb.stanford. edu/~tibs/El emStatLearn/
- 18. Саймон Хайкин. Нейронные сети. Полный курс. 2-е изд., испр.: Пер. с англ. М.: ООО «И. Д. Вильямс», 2006. 1104 с.
- 19. Lora D. Delwiche, Susan J. Slaughter. The Little SAS® Book: A Primer, Fifth Edition. SAS Institute, 2012. 331 pages.
- 20. SAS/STAT User's Guide. ttp://support.sas.com/documentation/onlinedoc/stat/index.html

Магистерская программа

"Суперкомпьютерные системы и приложения"

- 1. Поколения архитектур компьютеров и парадигмы программирования.
- 2. Архитектурные особенности современных микропроцессоров. Программно-аппаратная архитектура суперкомпьютеров Ломоносов и Blue Gene/P.
- 3. Последовательная и параллельная сложность алгоритмов, информационный граф и ресурс параллелизма алгоритмов.
- 4. Методы организация параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 5. Архитектурные особенности графических процессоров, направленные на массивнопараллельные вычисления.
- 6. Методы эффективной организации параллельных вычислений на графических
- 7. процессорах.
- 8. Методы статической и динамической балансировки загрузки процессоров: сдваивания, геометрического параллелизма, коллективного решения, конвейерного параллелизма, диффузной балансировки загрузки.
- 9. Декомпозиция расчетных сеток: критерии и методы.
- 10. Параллельные алгоритмы сортировки данных.
- 11. Алгоритмы взаимного исключения в распределенных системах (алгоритмы на основе сообщений, маркерные алгоритмы).
- 12. Алгоритмы выбора лидера в распределенных системах (алгоритм громилы, маркерное кольцо, выборы лидера в сенсорных сетях)
- 13. Блокчейн архитектура, принципы функционирования узлов (полный узел, легкий узел, майнер).
- 14. Клеточные автоматы: определение, элементарные клеточные автоматы, классификация Вольфрама, двумерные клеточные автоматы, типы окрестностей, игра "Жизнь", параллельная реализация.
- 15. Сети Петри: определение, примеры, вариации (сети с приоритетами, ингибиторные
- 16. сети, цветные сети), моделирование параллельных процессов.
- 17. Генетические алгоритмы: операторы генетических алгоритмов, особенности кодирования (двоичное, целочисленное, непрерывное, перестановками), сходимость

генетических алгоритмов (теория схем), островная модель, клеточные генетические алгоритмы.

- 18. Методы роевой оптимизации: понятие роевых алгоритмов, принципы Рейнолдса, метод роя частиц, алгоритм бактериального поиска, пчелиные алгоритмы.
- 19. Способы организации установки и загрузки ОС узлов вычислительного кластера.
- 20. Системы управления задачами для суперкомпьютеров.
- 21. Управление загрузочными образами узлов суперкомпьютера, синхронизация учётных
- 22. записей.
- 23. Способы организации удалённого доступа, квотирование доступа и ресурсов.
- 24. Образцы (паттерны) проектирования, их классификация и способ описания. Примеры образцов: структурного, поведенческого и порождающего.
- 25. Псевдополиномиальные алгоритмы решения задач: разбиение, рюкзак, расписание для многопроцессорной системы (число процессоров фиксировано).
- 26. Метод ветвей и границ на примере минимаксной задачи теории расписаний
- 27. Приближенные алгоритмы решения NP-трудных задач: упаковка в контейнеры, рюкзак, коммивояжер, расписание для многопроцессорной системы, вершинное покрытие. Оценки их сложности и погрешности.
- 28. Средние и эмпирические операционные характеристики стратегий распознавания (классификаторов, регрессий). Проблема недообучения и переобучения. Проблема устойчивости решений. Роль обучающей, валидационной и контрольной выборок при построении распознающей системы. Скользящий контроль (кросс-валидация). Регуляризация на примере линейной регрессии, её роль.
- 29. Проблема смещения-дисперсии. Ансамбли классификаторов. Основные этапы работы типичного базового классификатора, возможность коррекции на разных этапах. Бэггинг. Случайные подпространства. Бустинг. Случайный лес как композиция основных подходов к построению ансамбля.
- 30. Задачи кластеризации, сопоставление с операцией группирования и задачей классификации. Различные постановки: разбиение, стохастическая, нечёткая, иерархическая, упорядочивание, однокластерная (последовательная). Задача и процедура К-средних. Метод нечеткой кластеризации С-средних. Агломеративная кластеризация.

- 1. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург,
- 2. 2002. 608 c.
- 3. Якобовский М.В. Введение в параллельные методы решения задач: Учебное пособие . -
- М.: Издательство Московского университета, 2012. 328 с.
- 4. Антонов А.С. Технологии параллельного программирования МРІ и ОрепМР: Учеб.
- 5. пособие. М.: Издательство Московского университета, 2012.-344 с.-(Серия
- 6. "Суперкомпьютерное образование"). ISBN 978-5-211-06343
- 7. А. В. Боресков и др. Параллельные вычисления на GPU. Архитектура и программная модель CUDA: Учебное пособие.-Издательство Московского университета, 2012, 336 стр.
- 8. Интернет ресурсы: http://parallel.ru, http://AlgoWiki-Project.org,
- 9. www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
- 10. Ершов Н.М., Попова Н.Н. Естественные модели параллельных вычислений: Учебное пособие.- М., Макс-пресс, 2016
- 11. Воеводин Вл.В., Жуматий С.А. "Вычислительное дело и кластерные системы". Москва, Изд-во МГУ, 2007.
- 12. Жуматий С.А., Дацюк О.В. "Администрирование суперкомпьютеров и кластерных систем". Москва, Изд-во МГУ, 2014.
- 13. Арлоу Д., Нейштадт А. UML 2 и унифицированный процесс. Практический объектноориентированный анализ и проектирование. - СПб.: Символ-Плюс.- 2008. Глава 25
- 14. Рамбо Дж., Блаха М. UML 2.0. Объектно-ориентированное моделирование и разработка. СПб.: Питер. 2007. Главы 3 и 19.
- 15. Гамма Э. и др. Приемы объектно-ориентированного проектирования. Паттерны проектирования.: Пер. с англ. СПб.: Питер, 2016.

- 16. Давыдов Э.Г. Исследование операций. М.: Высшая школа, 1990.
- 17. Морозов В.В. Основы теории игр. М.: МГУ, 2002.
- 18. Кормен Т., Лейзерсон Ч., Ривест Р, Штайн К. Алгоритмы. Построение и анализ.
- 19. М.: МЦНМО, 2005.
- 20. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность.
- М.: Мир, 1985.
- 21. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
- 22. Флах П. Машинное обучение. Наука и искусство построения алгоритмов, которые
- 23. извлекают знания из данных. M: ДМК Пресс. 2015. 400 с. ISBN 978-5-97060-273-7 (Flach P. Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, 2012)
- 24. Bishop C. M. Pattern recognition and machine learning. Springer, 2006. Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию //Киев: Наукова думка. 2004.

Дополнительная литература

- 1. Коэльо Л. П., Ричарт В. Построение систем машинного обучения на языке Python. М: ДМК Пресс. 2016. (Coelho L. P., Rich-ert W. Building machine learning systems with Python. 2nd ed. Packt Publishing Ltd, 2015.)
- 2. Max Kuhn, Kjell Johnson. Applied Predictive Modeling. Springer, 2013.
- 3. Hastie, T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Spring-er-Verlag, 2009. 746 p. ISBN 978-0-387-84857-0.
- 4. Журавлев Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. М.: Фазис, 2006. ISBN 5-7036-01088.
- 5. I.H. Witten, E. Frank Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. Morgan Kaufmann, 2005 ISBN 0-12-088407-0
- 6. Ресурсы интернета: www.machinelearning.ru

Магистерская программа

"Теория нелинейных динамических систем: анализ, синтез и управление"

- 1. Построение алгоритмов управления нелинейными аффинными системами методом обратной задачи динамики.
- 2. Стабилизация нелинейной аффинной системы 2-го порядка регулятором переменной структуры.
- 3. Подход к стабилизации нелинейных систем на основе метода функций Ляпунова.
- 4. Случайные процессы с независимыми приращениями, стационарные и нормальные, вывод стохастических интегралов Ито и Стратоновича.
- 5. Формулировка необходимых условий существования обобщенного оптимального управления и объяснение условий их реализации в прикладных задачах
- 6. Принцип компенсации случайных возмущений с помощью синтеза обобщенного оптимального управления.
- 7. Критерии наблюдаемости (Калмана и Розенброка).
- 8. Канонические формы наблюдаемости.
- 9. Алгоритмы построения наблюдателей полного и пониженного порядка.
- 10. Общая постановка задачи адаптивного управления. Типы адаптивных систем. Основные этапы построения алгоритмов адаптивного управления.
- 11. Переключаемые линейные системы. Устойчивость переключаемых линейных систем. Необходимое условие устойчивости. Достаточные условия устойчивости.
- 12. Стабилизация переключаемых линейных систем с использованием методов одновременной стабилизации.
- 13. Общая схема включения компенсатора накопления, преобразования различных схем. Схема противонакопления на основе наблюдателя. Безударное переключение.

- 14. Многообразие. Примеры. Вектор, касательное пространство, векторное поле, распределение. Гладкое отображение, дифференциал отображения.
- 15. Группы преобразований, группы Ли. Операторы сдвига, левоинвариантные и правоинвариантныне векторные поля. Алгебра Ли группы Ли. Ранговое условие и его связь с управляемостью.
- 16. Кинематическая модель манипулятора: обратные и прямые задачи кинематики для позиции, скорости и усилия.
- 17. Задача управления движением манипулятора. Применение метода линеаризации обратной связью в задаче управления движением (общая схема).
- 18. Робастное управление манипулятором: метод функций Ляпунова.
- 19. Уравнения с сосредоточенными запаздываниями и их классификация. Основные отличия от обыкновенных дифференциальных уравнений.
- 20. Свойства спектра характеристических квазимногочленов. Диаграммы распределения.
- 21. Алгебраическое представление систем с соизмеримыми запаздываниями. Нормальная форма Смита.
- 22. Процедура построения оператора, соответствующего присваиваемому собственному значению, в задаче присвоения спектра статической обратной связью. Обоснование того, что ядро данного оператора содержит собственные вектора матрицы замкнутой системы.
- 23. Число обусловленности и желательные параметры замкнутой системы в задаче присвоения спектра статической обратной связью. Теорема Бауэра-Файка. Теоремы о числе обусловленности матрицы собственных векторов для нормы матрицы обратной связи и для вектора состояния.
- 24. Число обусловленности и устойчивость замкнутой системы по отношению к операторным возмущениям в задаче присвоения спектра. Обратная пропорциональная связь числа обусловленности и радиуса операторных возмущений, сохраняющих устойчивость замкнутой системы.
- 25. Нулевая динамика и относительный порядок для скалярных систем.
- 26. Постановка задачи обращения. Алгоритм обращения с использованием глубокой обратной связи.
- 27. Постановка задачи обращения. Алгоритм обращения с разрывной обратной связью.
- 28. Устойчивые особые точки автономных систем обыкновенных дифференциальных уравнений и их бифуркации.
- 29. Орбитально устойчивые циклы автономных систем обыкновенных
- 30. дифференциальных уравнений и их бифуркации.
- 31. Сценарии перехода к хаосу в автономных системах обыкновенных дифференциальных уравнений.

- 1. Емельянов С.В., Коровин С.К. "Новые типы обратной связи" М.: Наука, 1997.
- 2. Ким Д.П. "Теория автоматического управления. Ч. 1, 2." М.: ФИЗМАТЛИТ, 2003.
- 3. Крутько П.Д. "Обратные задачи динамики в теории автоматического управления" М.: Машиностроение, 2004.
- 4. Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974.
- 5. Варга Дж. Оптимальное управление дифференциальными и функциональными уравнениями. М.: Наука, 1977.
- 6. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов, 1969.
- 7. Смольяков Э.Р. Неизвестные страницы истории оптимального управления, М.: УРСС, 2002.
- 8. Смольяков Э.Р. Обобщенное оптимальное управление и динамические конфликтные задачи. М.: МГУ им. М.В.Ломоносова. 2010.
- 9. Смольяков Э.Р. Теория поиска точных уравнений и законов движения. М,: Русская энциклопедия, 2012.
- 10. Смольяков Э.Р. Глобальная оптимизация возмущаемых динамических систем.

- 11. Saarbrucken: LAP LAMBERT Academic Publishing, 2014.
- 12. С.К. Коровин, В.В. Фомичев. Наблюдатели состояния для линейных систем с неопределенностью. // М.: ФИЗМАТЛИТ, 2007. 224 с.
- 13. Шпилевая О.Я., Котов К.Ю. Переключаемые системы: устойчивость и проектирование (обзор) // Автометрия. 2008. Т. 44, № 5. С. 71-87.
- 14. Heemels W.P.M.H., Schutter B.De., Lunze J., Lazar M. Stability analysis and controller synthesis for hybrid dynamical systems // Phil. Trans. R. Soc. A. 2010. V.368. P. 49374960.
- 15. Liberzon D., Morse A.S. Basic problems in stability and design of switched systems // IEEE Control Systems. 1999. V. 19. N 5. P. 59-70.
- 16. Hespanha J.P. Uniform stability of switched linear systems: extensions of LaSalle's invariance principle // Automatic Control, IEEE Transactions. 2004. V. 49. N 4. P. 470482.
- 17. Фурсов А.С., Хусаинов Э.Ф. К вопросу о стабилизации переключаемых линейных систем // Дифференц. уравнения, 2015, Т. 51, N 11. С. 1522-1533.
- 18. Баландин Д.В., Коган М.М. Синтез законов управления на основе линейных матричных неравенств. М.: ФИЗМАТЛИТ, 2007.
- 19. Goodwin G.C. A Brief Overview of Nonlinear Control
- 20. Goodwin G.C. Control System Design
- 21. Агарчев А.А., Сачков Ю.Л. Геометрическая теория управления. Гл. 1, Разд. 18.
- 22. Сачков Ю.Л. Теория управления на группах Ли. // Совр. Математика. Фунд. направления. Т. 26
- 23. Edwards. C, Postlethwaite I. Anti-windup and Bumpless-transfer Schemes, Automatica, Vol.
- 34, No. 2, pp. 199-210
- 24. Olsson H., Amstrong K.J. Friction Models and Friction
- 25. Isidori A. Nonlinear Control Systems.
- 26. Morin P., Samson C. Motion Control of Wheeled Mobile Robots // Springer Handbook on ROBOTIC
- 27. Lewis F.L. Robot Manipulator Control: Theory and Practice. New York: 2006.
- 28. Springer Handbook on Robotics // Editors Siciliano B., Khatib J. Springer, 2008,
- 29. Bruyninckx H. Robot Kinematics and Dynamics. 2010.
- 30. Беллман Р., Кук К.Л. Дифференциально-разностные уравнения. М.: Мир, 1967. 548 с.
- 31. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. Изд. 2-е, стереотипное. М.: Едиториал УРСС, 2004. 400 с.
- 32. Б.Т. Поляк, П.С. Щербаков «Трудные задачи линейной теории управления. Некоторые подходы к решению», 2005
- 33. Blondel V. D., Tsitsiklis J. N. A survey of computational complexity results in systems and control //Automatica. 2000. T. 36. №. 9. C. 1249-1274.
- 34. Гэри М., Джонсон Д. Вычислительные машины и трудно решаемые задачи. М.: Мир. 1982.
- 35. Fu M. et al. Pole placement via static output feedback is NP-hard //IEEE Transactions on Automatic Control. 2004. T. 49. №. 5. C. 855-857.
- 36. Kautsky J., Nichols N. K., Van Dooren P. Robust pole assignment in linear state feedback //International Journal of Control. 1985. T. 41. №. 5. C. 1129-1155.
- 37. Toker O., Ozbay H. On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback //American Control Conference, Proceedings of the 1995. IEEE, 1995. T. 4. C. 2525-2526.
- 38. Капалин И. В., Фомичев В. В. Минимальная стабилизация векторных (MISO и SIMO) систем // Дифференциальные уравнения. 2011. Т. 47, № 11. С. 1573-1582.
- 39. Ильин А. В., Коровин С. К., Фомичев В. В. Методы робастного обращения динамических систем. М.: Физматлит, 2009. 224 с.
- 40. Н.А.Магницкий "Теория динамического хаоса", М. ЛЕНАНД, 2011г.,320 с

Магистерская программа "Технологии программирования"

- 1. Основные понятия дедуктивной верификации. Методы доказательства корректности программ.
- 2. Основные понятия дедуктивной верификации. Методы доказательства завершимости программ.
- 3. Основные сведения об объектном языке ограничений (OCL): состав OCL-выражения, навигация по ассоциациям, виды коллекций, операции с коллекциями, учёт наследования в выражениях и наследование ограничений. Примеры использования OCL.
- 4. Способы объектно-реляционного отображения для классов и атрибутов, бинарных и Nарных ассоциаций, классов ассоциаций, иерархий наследования. Примеры применения этих способов. Моделирование схемы реляционной базы данных с помощью диаграммы классов.
- 5. Образцы (паттерны) проектирования, их классификация и способ описания. Примеры образцов: структурного, поведенческого и порождающего.
- 6. Основные понятия безопасности информации: конфиденциальность, целостность, доступность. Виды защиты информации. Модель Белла-Лападулы. Понятие ошибки, уязвимости в программном обеспечении, примеры.
- 7. Ошибка типа «переполнение буфера». Выполнение произвольного кода на исполнимом стеке. Противодействие выполнению кода на стеке: «канарейка», DEP. Выполнение произвольного кода на неисполнимом стеке. Return-to-libc, return-oriented programming (ROP).
- 8. Статический анализ исходного кода с целью поиска ошибок. Типы обнаруживаемых ошибок. Путь распространения ошибки: source, propagation, sink. Потоковая и контекстная чувствительность. Качество результата анализа: false/true positive/negative. Интерпретация результатов анализа.
- 9. Применение отладки для оценки возможности эксплуатации уязвимостей. Технологии отладки. Отладка пользовательского кода. Полносистемная отладка в виртуальной машине. Статическое и динамическое инструментирование. Фаззинг. Разновидности фаззинга: черный ящик, белый ящик, серый ящик.
- 10. Символьное выполнение: основные понятия. Схема работы системы символьного выполнения. Предикат пути, предикат безопасности. Проблема экспоненциального взрыва, стратегии выбора следующего состояния.
- 11. Критерии полноты тестирования. Доменные, функциональные, структурные и проблемные критерии полноты. Использование графов, грамматик и логических выражений для построения критериев полноты тестирования. Типовые критерии покрытия кола
- 12. Методы контроля качества ПО. Верификация и валидация. Виды верификации. Экспертиза. Статический и динамический анализ. Формальные методы верификации. Проверка моделей.
- 13. Спецификация и верификация параллельных программ. Синхронная и асинхронная параллельность. Справедливость планировщика. Темпоральная логика линейного времени (LTL). Проблема взаимного исключения процессов.
- 14. Архитектурные особенности графических процессоров, направленные на массивнопараллельные вычисления.
- 15. Методы эффективной организации параллельных вычислений на графических процессорах.

- 1. Буздалов, Корныхин, Панфёров, Петренко, Хорошилов. Практикум по дедуктивной верификации программ: учебно-метоДическое пособие. -М.: МАКС-Пресс, 2014.
- 2. Б.Мейер. Объектно-ориентированное конструирование программных систем М.: Русская РеДакиия, 2005.
- 3. Арлоу Д., НейштаДт А. UML 2 и унифицированный процесс. Практический объектноориентированный анализ и проектирование. - СПб.: Символ-Плюс.- 2008. Глава 25.
- 4. Рамбо Дж., Блаха М. UML 2.0. Объектно-ориентированное моДелирование и разработка. СПб.: Питер. 2007. Главы 3 и 19.

- 5. Гамма Э. и Др. Приемы объектно-ориентированного проектирования.Паттерны проектирования.: Пер. с англ. СПб.: Питер, 2016.
- 6. Brian Chess, Jacob West. Secure Programming with Static Analysis / Addison-Wesley Professional, 2007.
- 7. Aleph One. Smashing the Stack for Fun and Profit
- 8. Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit Hardening Made Easy.
- 9. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, Dawson Engler. A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
- 10. William R. Bush, Jonathan D. Pincus, David J. Sielaff. A Static Analyzer for Finding Dynamic Programming Errors.
- 11. Eli Bendersky. Серия статей "How debuggers work".
- 12. Chow J., Garfinkel T., Chen P. M. Decoupling dynamic program analysis from execution in virtual
- 13. environments // USENIX2008 Annual Technical Conference on Annual Technical Conference. 2008. C. 114
- 14. Nethercote N., Seward J. Valgrind: a framework for heavyweight dynamic binary instrumentation // ACM Sigplan notices. ACM, 2007. T. 42. N_{\odot} . 6. C. 89-100.
- 15. Амини П., Саттон М., Грин А. Fuzzing: исследование уязвимостей методом грубой силы. СимволПлюс, 2009.
- 16. Edward J. Schwartz, Thanassis Avgerinos, David Brumley. All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but might have been afraid to ask), 2010
- 17. C. Cadar, D. Dunbar, D. Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs, 2008.
- 18. Д. Месарош. Шаблоны тестирования хUnit. М.: Вильямс, 2008
- 19. Материалы курса В.В.Кулямина "Тестирование программного обеспечения": http://mbt-course.narod.ru
- 20. 1. Ю.Г. Карпов. Model Checking. Верификация параллельных и распределенных программных систем. СПб.: БХВ-Петербург, 2010.
- 21. ВоевоДин В.В., ВоевоДин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург, 2002. 608 с.
- 22. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А.
- 23. Новые алгоритмы вычислительной гиДроДинамики Для многопроцессорных вычислительных комплексов./М.: ИзДательство Московского университета, 2013, 472 с.
- 24. Якобовский М.В. ВвеДение в параллельные метоДы решения заДач: Учебное пособие.
- М.: Издательство Московского университета, 2012. 328 с.
- 25. Антонов А.С. Технологии параллельного программирования MPI и ОрепMP: Учеб. пособие. М.: ИзДательство Московского университета, 2012.-344 с.-(Серия "Суперкомпьютерное образование"). ISBN 978-5-211-06343
- 26. А. В. Боресков и Др. Параллельные вычисления на GPU. Архитектура и программная моДель CUDA: Учебное пособие. -ИзДательство Московского университета, 2012, 336 стр.
- 27. Интернет pecypcы: http://parallel.ru, http://AlgoWiki-Project.org, www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf

Магистерская программа "Численные методы и математическое моделирование"

Обшая часть

1. Обобщенное решение задачи Дирихле для уравнения второго порядка эллиптического типа.

- 2. Метод Ритца приближенного решения эллиптического уравнения второго порядка.
- 3. Вариационная постановка задачи на собственные значения симметричного положительного операторного уравнения.
- 4. Метод Ритца в проблеме вычисления собственных значений задачи Дирихле.
- 5. Метод конечных элементов для обыкновенного дифференциального уравнения.
- 6. Метод конечных элементов для задачи об изгибе упругого бруса.
- 7. Матрица жесткости и матрица массы линейного конечного элемента.
- 8. Теорема о сходимости метода конечных элементов на линейных треугольниках в случае уравнения Пуассона.
- 9. Вывод уравнения Кортевега-де Фриза.
- 10. Групповой анализ обыкновенных дифференциальных уравнений первого и второго порядка.
- 11. Групповой анализ для уравнения теплопроводности.
- 12. Уравнение Бюргерса и его линеаризация.
- 13. Метод кусочно-постоянных аппроксимаций решения интегральных уравнений Фредгольма 2-го рода.
- 14. Метод конечных элементов решения интегральных уравнений Фредгольма 2-го рода.
- 15. Метод решения сингулярного интегрального уравнения с ядром Гильберта на основе квадратурных формул интерполяционного типа.
- 16. Численное решение интегральных уравнений Фредгольма 2-го рода в случае неоднозначной разрешимости соответствующего однородного уравнения.
- 17. Методы организации параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 18. Суперкомпьютерное моделирование турбулентных течений.
- 19. Использование суперкомпьютеров для решения задач молекулярного моделирования.
- 20. Методы эффективной организации параллельных вычислений на графических процессорах

Специальная часть

- 1. Разностные схемы для одномерного уравнения конвективной диффузии. Схема с направленными разностями, монотонные схемы первого и второго порядка точности. Схемная диффузии и дисперсии. Анализ диссипативных и дисперсионных свойств схем с направленными и центральными разностями.
- 2. Применение метода гармоник (Фурье, Неймана) для исследования свойств разностных схем. Анализ устойчивости, диссипативных и дисперсионных свойств разностных схем с весами для уравнения конвективной диффузии методом гармоник.
- 3. Разностная схема для уравнения теплопроводности с разрывными коэффициентами. Аппроксимация граничных условий второго рода для уравнения теплопроводности. Анализ теплового баланса в дискретной модели.
- 4. Разностные схемы для уравнений Навье-Стокса в естественных переменных. Разнесенные разностные сетки и сеточные функции. Аппроксимация операторов DIV и GRAD.
- 5. Аппроксимация конвективных членов в уравнениях Навье-Стокса в естественных переменных. Баланс кинетической энергии в дискретном случае. Выполнение условия несжимаемости.
- 6. Треугольные сетки. Триангуляция Делоне. Барицентрические координаты. Линейные конечные элементы.
- 7. Первая краевая задача для эллиптического уравнения. Билинейная форма. Главные краевые условия.
- 8. Вторая краевая задача для эллиптического уравнения. Билинейная форма. Естественные краевые условия.
- 9. Матрица диффузии и матрица масс. Свойства этих матриц (симметрия, положительность, разреженность, обусловленность)
- 10. Задача на собственные значения для эллиптического оператора и МКЭ. Метод обратных итераций.

- 11. МКЭ для уравнения теплопроводности и уравнения колебаний.
- 12. Методы решения сеточных уравнений МКЭ (Холецкого, CG, GMRES). Понятие о подпространствах Крылова.
- 13. Понятие о векторном МКЭ на примере задачи о диэлектрическом рассеивателе.
- 14. Понятие о МКЭ для интегральных уравнений теории потенциала.
- 15. Математическая модель динамики свободного множества взаимодействующих материальных точек.
- 16. Глобальные свойства решений задачи Коши для гамильтоновых уравнений.
- 17. Задача о движении двух взаимодействующих материальных точек и свойства ее решения.
- 18. Метод Верле и его свойства.
- 19. Симметрично-симплектические методы Рунге-Кутты.
- 20. Сохранение линейной и квадратичной форм методами Рунге-Кутты.

- 1. Михлин С.Г. Вариационные методы в математической физике. М. Наука, 1970.
- 2. Андреев В.Б. Лекции по методу конечных элементов. М.МАКС Пресс ,2015.
- 3. Ибрагимов Н.Х. Практический курс дифференциальных уравнений и математического моделирования. М. Физматлит, 2012.
- 4. Сетуха А.В. Численные методы в интегральных уравнениях и их приложения. М.АРГАМАК-МЕДИА, 2014.
- 5. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления СПб. БХВ-Петербург, 2002.
- 6. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А.Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов. М.: Издательство Московского университета, 2013.
- 7. А.А.Самарский. Введение в численные методы.
- 8. М.В.Абакумов, А.В.Гулин. Лекции по численным методам математической физики.
- 9. А.А.Самарский, Ю.П.Попов. Разностные методы решения задач газовой динамики. Изд- во «Наука», 1992, с.422
- 10. К. Флетчер. Численные методы в динамике жидкости. Т.1, Т.2, Москва, Мир, 1991
- 11. В.Б. Андреев, «Лекции по методу конечных элементов», М. 2010
- 12. В.Б. Андреев, «Численные методы», М. 2013
- 13. М.Ю. Баландин, Э.П. Шурина, "Векторный метод конечных элементов", Н. 2001
- 14. А.В. Скворцов, Н.С. Мирза, «Алгоритмы построения и анализа триангуляции», Томск, 2006.
- 15. 2. В. И. Арнольд. Математические методы классической механики. М.: Наука, 1979, 431.
- 16. 3. Е. Хайрер, С. П. Нерсетт, Г. Ваннер. Решение обыкновенных дифференциальных уравнений І. Нежесткие задачи. М.: Мир, 1990, 511 с.
- 17. 4. E. Hairer, C. Lubich, G Wanner. Geometric Numerical Integration (2nd ed.) Springer, Berlin, 2006, 644 p.
- 18. Г. Г. Еленин, П. И. Шляхов. Геометрическая структура пространства параметров симплектических методов Рунге-Кутты. Математическое моделирование, т. 23, № 5, с. 16-34. 2011.
- 19. Г. Г. Еленин, Т. Г. Еленина. Об одном однопараметрическом семействе разностных схем для численного решения задачи Кеплера. ЖВМиМФ, т. 55, № 8, с. 1292-1298, 2015.