

Язык Java

и разработка Java-приложений

Владимир Юрьевич Романов,

Московский Государственный Университет им. М.В.Ломоносова
Факультет Вычислительной Математики и Кибернетики

vromanov@cs.msu.su,
romanov.rvy@yandex.ru

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

2

Литература

1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley
Java(TM) Programming Language, Java SE 8 Edition
 https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf

2. Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley
The JavaTM Virtual Machine Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf

3. Eclipse web sites: http://www.eclipse.org

4. Oracle web site:
https://docs.oracle.com/javase/8/docs/

5. Брюс Эккель. Философия Java. 4-е издание.
Издательство «Питер». Петербург 2016.
ISBN 5-88782-105-1

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

3

Документация по Java

https://docs.oracle.com/javase/8/docs/

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

4

Цели курса

• Изучение языка Java перед изучением

технологий основанных на языке Java

• Изучение среды разработки Eclipse

распространяемой фирмой IBM в исходных

текстах

• Подготовка к изучению курса:

“Разработка объектно-ориентированных

систем программирования в среде Eclipse”

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

5
О курсе

“Разработка объектно-ориентированных

систем программирования в среде Eclipse”

• Разработка расширений (plug-in) для среды

Eclipse

• Разработка расширений среды для

объектно-ориентированных систем

программирования

• Разработка распознавателей для объектно-

ориентированных языков программирования

• Разработка промежуточного представления

компилятора с помощью Eclipse Modeling

Framework

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

6
О курсе

“Разработка объектно-ориентированных

систем программирования в среде Eclipse”

• Визуализация промежуточного

представления компилятора с помощью

Graphic Editing Framework

• Моделирование программ с помощью

реализованной в среде Eclipse метамодели

языка UML 2.0

• Генерация кода для виртуальной машины

Java

• Разработка в среде Eclipse отладчиков для

языков программирования

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

7

Язык программирования Java

• Простота

• Язык высокого уровня

• Объектно-ориентированный

• Независим от архитектуры

• Переносим в исходных

текстах и в двоичном коде

• Интерпретируемый и

компилируемый

• Многопоточный

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

8

Платформа Java

• Платформа – окружение
разработки где работает
программа

• Java – платформа работает
на разных операционных
системах

• Java – платформа состоит
из виртуальной машины
Javа и интерфейса
приложений

Host Platform

Java Virtual Machine

Java API

Java Program

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

9

Компилятор и виртуальная машина Java

Текст

программы
Компилятор

Двоичный

файл

Текст

программы

Компилятор

Java
Байт-код JVM

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

10

Установка Eclipse. Версии среды

• Среда Eclipse бесплатна

• Дистрибутив Eclipse загружается с сайта:
https://www.eclipse.org/downloads/packages/release/2020-06/r

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

11

Установка Eclipse.

Eclipse Modeling Tools

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

12

Eclipse Modeling Tools

https://www.eclipse.org/downloads/packages/release/2020-06/r

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

13

IntelliJ IDEA Community Edition

https://www.jetbrains.com/idea/download/#section=windows

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Краткий обзор среды Eclipse
для разработки на языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

15

Запуск среды Eclipse на исполнение

• Установка – просто распаковка Zip-архива.

При установке не используется registry

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

16

Обзор среды Eclipse

 Перспективы (Perspectives)

 Виды (Views)

 Редакторы (Editors)

 Работа с файлами

 Навигация по рабочему месту
(Workbench)

 Консоль (Console)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

17

Обзор среды Eclipse.

Перспективы (Java)

• На рабочем месте (workbench) может быть открыто несколько перспектив

• Различные перспективы могут быть выбраны из панели перспектив

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

18

Обзор среды Eclipse.

Перспективы (Java Browsing)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

19

Обзор среды Eclipse.

Перспективы (Debug)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

20

Обзор среды Eclipse.

Добавление видов к перспективам

• Добавление к перспективе нового вида (Console)

• Удаление вида Welcome из перспективы

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

21

Обзор среды Eclipse.

Сохранение перспективы

• Сохранение перспективы под новым именем

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

22

Обзор среды Eclipse.

Виды

Java Perspective

• Declaration
• Javadoc
• Outline
• Package Explorer
• Problems
• Welcome

Debug Perspective

• Console
• Debug
• Outline
• Tasks
• Variables
• Welcome

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

23

Обзор среды Eclipse.

Редакторы

Редакторы черепицей

Редакторы в стеке

• Редакторы могут быть открыты
для большинства ресурсов

• Несколько редакторов может
быть открыто в стеке

• Если содержимое редактора было
модифицировано, но не сохранено,
то перед именем файла *

• Если редактор активен, то в меню
и панели инструментов содержатся
операции применимые к активному
редактору

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

24

Обзор среды Eclipse.

Создание нового проекта

• File | New | Project

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

25

Обзор среды Eclipse.

Свойства

Все ресурсы имеют свойства.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

26

Обзор среды Eclipse.

Свойства

Все ресурсы имеют свойства. Свойства проекта Chess:

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

27

Обзор среды Eclipse.

Локальная история (1)

Для каждого файла хранится локальная история файла

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

28

Обзор среды Eclipse.

Локальная история (2)

• Каждое использование команды Save сохраняет редакцию файла
• Редакции файлов можно сравнить

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

29

Вывод программы на консоль

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Введение в язык Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

31

Классы Java и их синтаксис

Члены класса

• Классы инкапсулируют атрибуты (поля) и поведение
(методы)

• Поля и методы являются членами класса

• Члены класса могут принадлежать всем экземплярам
класса. В этом случае поля и методы помечаются
ключевым словом static

• Члены класса могут принадлежать конкретным
экземплярам класса. В этом случае они называются
полями и методами экземпляров класса

• В одном файле с расширением *.java не может быть
более одного публичного класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

32

Классы Java и их синтаксис.

Члены классов

• Классы инкапсулируют атрибуты (поля) и поведение
(методы)

• Атрибуты и методы являются членами класса

class Square {

 int h;

 int v;

 boolean isNear(Square s) {

 return

 Math.abs(h - s.h) <= 1 &&

 Math.abs(v - s.v) <= 1;

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

33

Классы Java и их синтаксис.

Члены классов. Eclipse

• Классы инкапсулируют атрибуты (поля) и поведение
(методы)
• Поля и методы являются членами класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

34

Классы Java и их синтаксис.
Объявление полей класса и экземпляра

• Поля класса могут принадлежать всем экземплярам
класса. В этом случае поля помечаются ключевым словом
static.

class Point {

 public int x, y;

 static public final

 Point ORIGIN = new Point(0,0);

 public Point(int newX, int newX)

 { x = newX; y = newX; }

 public Point(Point p)

 { x = p.x; y = p.y; }

}

Поле экземпляра класса

Поле всех
экземпляров класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

35

Классы Java и их синтаксис.

Использование полей класса

• Для доступа к статическому полю (класса) используется
имя класса, для доступа к полю экземпляра - имя
экземпляра.

 // Использование поля класса.

 Point p1 = Point.ORIGIN;

 // Создание экземпляра класса.

 Point p2 = new Point(3, 4);

 Point p3 = new Point(5, 6);

 // Использование поля экземпляра.

 p2.y = 100;

 p3.y = p2.y;

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

36

Классы Java и их синтаксис.
Объявление методов класса и экземпляра

• Методы класса принадлежат всем экземплярам класса.
В этом случае методы помечаются ключевым словом static

class Point {

 static

 public int distanse(Point p1, Point p2) {

 int dx = p1.x – p2.x;

 int dy = p1.y – p2.y;

 return Math.sqrt(dx * dx + dy * dy);

 }

 public int distanse(Point p) {

 int dx = p.x – x;

 int dy = p.y – y;

 return Math.sqrt(dx * dx + dy * dy);

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

37

Классы Java и их синтаксис.

Использование методов

• Для доступа к статическому методу (класса)
используется имя класса, для доступа к методу
экземпляра - имя экземпляра класса.

 Point p1 = new Point(3, 4);

 Point p2 = new Point(5, 6);

 // Использование метода класса.

 int d1 = Point.distanse(p1, p2);

 // Использование метода экземпляра.

 int d2 = p2.distanse(p1);

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

38

Классы Java и их синтаксис.

Область видимости статических методов

• В статических методах класса можно использовать
только статические поля класса и вызывать только
статические методы класса.

class Test {

 public int p;

 public void process() {

 }

 static public void main(String s[]) {

 p = 1; // Ошибка

 process(); // Ошибка

 Test test = new Test();

 test.p = 1;

 test.process();

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

39

Классы Java и их синтаксис.

Наследование классов

• Классы могут быть независимы друг от друга

• Классы могут быть связаны отношением наследования.
(суперкласс/подкласс).

public class King extends Piece {

 void move(Square s) {

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

40

Изображение наследования классов Java на

UML-диаграммах

public class King extends Piece {

 void move(Square s) {

 }

}

King

Piece

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

41

Классы Java и их синтаксис.

Наследование классов

• Классы могут быть связаны отношением наследования
(cуперкласс/подкласс).

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

42

Интерфейсы в Java и их синтаксис.

Объявление интерфейсов

• Интерфейсы описывают методы, которые должны быть
реализованы в классах
• Могут описывать неизменяемые (final) переменные
• Метафора – что должен уметь делать класс

// Интерфейс для классов представляющих

// шахматные ходы

public interface Move {

 // Передвинуть фигуры на доске.

 void doMove();

 // Вернуть фигуры в исходное состояние.

 void undoMove();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

43

Интерфейсы в Java и их синтаксис.

Реализация интерфейсов классами

• Классы реализуют методы интерфейса
• Абстрактные классы могут реализовать не все методы
интерфейса. Остальные реализуют потомки класса.

// Шахматный ход – рокировка.

public class Castling implements Move {

 void doMove() {

 // Передвинуть короля и ладью

 }

 void undoMove() {

 // Вернуть короля и ладью

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

44

Интерфейсы в Java и их синтаксис.

Реализация интерфейсов классами

// Шахматный ход – захват чужой фигуры

public class Capture implements Move {

 void doMove() {

 // Убрать чужую фигуру.

 // Передвинуть на ее место свою.

 }

 void undoMove() {

 // Передвинуть свою фигуру на прежнее место.

 // Поставить чужую фигуру.

 }

}

Capture Move

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

45

Интерфейсы в Java и их синтаксис.

Не изменяемые поля интерфейса.

public interface BaseColors {

 int RED = 1, GREEN = 2, BLUE = 4;

}

int color = BaseColors.RED;

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

46

Интерфейсы в Java и их синтаксис.

Статические методы интерфейсов в Java 8.

// Фигура ходит по диагонали.

public interface DiagonalPiece {

 static boolean isDiagonalPined(Square target) {

 // Может ли фигура пойти на поле target?

 // Откроется ли королю шах если диагональная

 // фигура пойдет на клетку target

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

47

Интерфейсы в Java и их синтаксис.

Статические методы интерфейсов в Java 8.

// Фигура ходит по вертикали или горизонтали.

public interface LinePiece {

 static

 boolean isVerticalPined(Square target) {

 // Может ли фигура пойти на поле target?

 // Откроется ли королю шах если

 // фигура пойдет на клетку target

 }

 static

 boolean isHorizontalPined(Square target) {

 // Может ли фигура пойти на поле target?

 // Откроется ли королю шах если

 // фигура пойдет на клетку target

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

48

Интерфейсы в Java и их синтаксис

Использование статических методов в Java 8

public class Queen extends Piece

 implements DiagonalPiece, LinePiece

{

 boolean isCorrectMove(Square s) {

 if (isHorizontalPined(s))

 return false;

 if (isVerticalPined(s))

 return false;

 if (isDiagonalPined(s))

 return false;

 // …

 }

 // …

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

49

Интерфейсы в Java и их синтаксис.

Использование статических методов в Java 8

public class Bishop extends Piece

 implements DiagonalPiece

{

 void isCorrectMove(Square s) {

 if (isDiagonalPined(s))

 return false;

 // …

 }

 // …

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

50

Интерфейсы в Java и их синтаксис

Использование статических методов в Java 8

public class Rook extends Piece

 implements LinePiece

{

 boolean isCorrectMove(Square s) {

 if (isHorizontalPined(s))

 return false;

 if (isVerticalPined(s))

 return false;

 // …

 }

 // …

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

51

Интерфейсы в Java и их синтаксис

Расширение интерфейсов

// Интерфейс для классов представляющих

// шахматные ходы

public interface Move {

 void doMove();

 void undoMove();

 Board getBoard(); // Ошибка!!!

}

Классы в уже оттранслированных
библиотеках не смогут реализовать

новый метод интерфейса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

52

Интерфейсы в Java и их синтаксис
Использование умалчиваемых методов в Java 8

// Интерфейс для классов представляющих

// шахматные ходы

public interface Move {

 void doMove();

 void undoMove();

 default Board getBoard() {

 // …

 }

}

Для классов в уже
оттранслированных библиотеках

используется умалчиваемая
реализация метода интерфейса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

53

Классы Java и их синтаксис.

Реализация интерфейсов. Eclipse

• Классы могут реализовывать один и более интерфейсов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

54

Классы Java и их синтаксис.

Группирование классов в пакеты

• Логически связанные классы группируются в пакеты

package chess.pieces;

import chess.core.Square;

public class Queen extends Piece

 implements DiagonalPiece, LinePiece

{

 void move(Square s) {}

 public boolean isPinning(Piece p) {

 return false;

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

55

Изображение пакетов на UML-диаграммах

package chess.pieces;

public class Queen extends Piece

implements DiagonalPiece, LinePiece

{

}

chess.pieces

Queen

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

56

Изображение пакетов на UML-диаграммах

package chess.pieces;

public class Queen extends Piece

implements DiagonalPiece, LinePiece

{

}

chess.pieces

Queen

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

57

Классы Java и их синтаксис.

Группирование классов в пакеты

• Логически связанные классы группируются в пакеты

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

58

Классы Java и их синтаксис.

Модификаторы классов

• Модификатор public
Класс доступен для всех других классов. Отсутствие
модификатора означает доступность класса только
классам внутри пакета содержащего данный класс.

• Модификатор private
Этот модификатор допустим только для классов, которые
вложены (nested) в другие классы

• Модификатор abstract
Запрет на создание экземпляров класса

• Модификатор final
Запрет на создание подклассов данного класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

59

Изображение модификаторов класса на UML

abstract public class Piece

{

}

Piece

{abstract}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

60

Конструкторы классов

• Конструктор – метод который создает экземпляр класса. Имя
конструктора совпадает с именем класса. Допустимы несколько
конструкторов с различными параметрами

• Конструктор используется для инициализации объектов

• Тело класса содержит по меньшей мере один конструктор

• Конструктор возвращает указатель на созданный объект.
Оператор return в конструкторе отсутствует

• Для создания экземпляров класса используется ключевое
слово new с именем конструктора

King piece = new King();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

61

Умалчиваемые конструкторы классов

• Умалчиваемый конструктор не имеет аргументов.
Предоставляется по умолчанию платформой Java если нет ни
одного явно определенного конструктора

• При определении хотя бы одного явного конструктора
необходимо объявить явно и умалчиваемый конструктор

class King {}

King piece = new King();

class King {

 King(Square s) {}

}

King piece = new King(); // Ошибка компиляции!!!

class King {

 King() {}

 King(Square s) {}

}

King piece = new King(); // Ошибки компиляции теперь нет

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

62

Цепочка конструкторов

• Цепочка конструкторов - вызов внутри класса одного
конструктора другим конструктором. Цепочки используются для
разделения общего кода между конструкторами

• Вызов цепочки конструкторов:
 this(список аргументов)

class Piece {

boolean isWhite;

Square square;

Piece(Square square, boolean isWhite)

 { this.square = square; this.isWhite = isWhite; }

Piece(Square square)

 { this(square, true); }

Piece()

 { this(null, true); }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

63

Конструкторы суперкласса

• Объекты суперкласса строятся до построения объекта-
подкласса

• Для инициализации членов суперкласса используется вызов:
 - super(список-аргументов)

• Первой строкой конструктора могут быть:
 - super(список-аргументов)
 - this(список-аргументов)

• В одном конструкторе нельзя использовать одновременно и
super и this

• Компилятор предоставляет неявный вызов конструктора
super() для всех конструкторов подклассов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

64

Освобождение памяти объектов

• В Java отсутствует понятие деструктора для неиспользуемых
объектов

• Освобождение памяти выполняется автоматически
виртуальной машиной Java

• Сборщик мусора освобождает память объектов, на которые
нет ссылок

• Связь между объектом и ссылкой на объект уничтожается при
задании нового значения ссылке на объект

objectReference = null;

• Объект без ссылок – кандидат на освобождение при сборке
мусора

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

65

Сборка мусора

• Можно явно запросить сборку мусора:
System.gc()

• Метод объекта finalize будет выполняться непосредственно
перед сборкой мусора.

@Override

protected void finalize() {

// TODO Здесь освободить захваченные ресурсы

}

Используется при:

 освобождении памяти выделенной с помощью native-методов

 закрытии открытых объектом файлов перед тем, как память
объекта будет освобождена.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

66

Поля классов

• Поля
 Часть определения классов
 Состояние объекта хранится в полях
 Каждый экземпляр получает собственную копию
переменных экземпляра

• В месте объявления поля могут быть инициализированы

• Если поля не инициализируются явно, то используются
умалчиваемые значения

public class Piece {

 public boolean isWhite;

 protected Square square;

}

имя тип
модификатор

доступа

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

67

Методы

• Методы определяют
 Как объект отвечает на сообщение
 Поведение класса
 Все методы принадлежат классу

имя тип модификатор
доступа

public class Square {

 private boolean isNear(Square s) { … }

}

список
параметров

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

68

Сигнатура метода

• Класс может иметь множество методов с одинаковыми
именами

• Каждый метод должен иметь другую сигнатуру

• Сигнатура – количество аргументов и типы аргументов

имя

public class Square {

 private boolean isNear(Square s) { … }

}

тип
параметра

сигнатура

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

69

Параметры метода

• Аргументы (параметры) пересылаются:
 примитивные типы по значению
 ссылки на объекты для ссылочных типов

• Примитивные значения не могут быть модифицированы при
пересылке в качестве аргументов

public void method1() {

 int a = 0;

 System.out.println(a); // вывод 0

 method2(a);

 System.out.println(a); // вывод 0

}

void method2(int a){

 a = a + 1;

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

70

Вызов метода и возврат из метода

• И для вызова метода используется оператор точка
 для методов экземпляра и для методов класса
 если вызываемый метод в том же классе, то оператор
точка не требуется

public class King {

 boolean wasCastling() { … }

 boolean isCorrectMove(Square newSquare) {

 Square s = King.oppositeKing().square;

 return !s.isNear(newSquare) && !wasCastling();

 }

}

метод определен в
том же классе

Вызов через оператор точка
метода экземпляра

Вызов через оператор точка метода класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

71

Перекрытие метода

• Метод суперкласса перекрывается методом подкласса с той
же сигнатурой

public class Piece {

 boolean isCorrectMove(Square newSquare) {…}

}

public class King extends Piece {

 boolean isCorrectMove(Square newSquare) {

 if (!super.isCorrectMove(newSquare))

 return false;

 Square s = King.oppositeKing().square;

 return !s.isNear(square) && !wasCastling();

 }

}

Перекрытый метод

Перекрывающий метод Вызов перекрытого метода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

72

Метод Main

• Приложение не может быть выполнено без хотя бы одного
класса с методом main

• Виртуальная машина Java загружает класс и начинает
выполнение с метода main

public class Chess {

 static public void main(String[] args) {

 }

}

• public – метод может быть вызван любым объектом

• static – нет необходимости сначала создавать объект

• void – этот метод ничего не возвращает

•public

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

73

Инкапсуляция

• Объект – содержит данные и действия, которые можно
выполнить над данными.

• Принцип сокрытия информации – объект знает о себе
все, другие объекты запрашивают информацию об этом
объекте.

• Все объекты отличаются друг от друга и программа –
это обмен сообщениями между объектами

• Для скрытия информации используется модификатор
доступа private

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

74

Статические члены

• Статические поля и методы принадлежат классу

• При изменении статического значения одним из
объектов данного класса изменяется значение для всех
объектов данного класса

• Статические методы и поля могут быть доступны без
создания экземпляров класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

75

Конечные (final) члены класса

• Поле с модификатором final не может быть
модифицировано. Это аналог констант в языке Java

• Константы связанные с классом обычно для простоты
доступа объявляются с модификаторами static final

• Общепринято константы записывать большими буквами

public class Piece {

 static final public KING = 1;

 static final public QUEEN = 2;

 static final public PAWN = 3;

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

76

Абстрактные классы

• Невозможно создать экземпляр абстрактного класса.
Предполагается, что они будут суперклассами для других
классов

• Методы с модификатором abstract не имеют реализации

• Если класс имеет абстрактные методы, то он должен
быть объявлен абстрактным

abstract public class Piece {

 boolean isCorrectMove(Square s) { … }

 abstract void makeMove(Square s);

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

77

Пакеты классов

• Классы могут быть сгруппированы в пакеты

package chess.pieces;

abstract public class Piece {

 boolean isCorrectMove(Square s) { … }

 abstract void makeMove(Square s);

}

• Различные пакеты могут иметь классы с одинаковыми
именами

• По соглашению имена пакетов задаются в нижнем
регистре

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

78

Видимость классов

• Для ссылки на классы в том же пакете можно
использовать только имя класса

• Для ссылки на классы из других пакетов необходимо
использовать полностью квалифицированное имя класса

package chess.movies;

public class Castling extends Move {

 void doMove(Square s) {

 if (chess.pieces.King.wasCasling())

 return;

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

79

Импорт классов

• Предложение import используется для того, что бы
сделать классы непосредственно доступными

package chess.movies;

import game.core.*;

import chess.pieces.King;

import chess.pieces.Rook;

public class Castling extends Move {

 void doMove(Square s) {

 if (King.wasCasling()) return;

 if (Rook.wasMoved()) return;

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

80

Импорт классов

• Предложение import используется для того, что бы
сделать классы непосредственно доступными

package chess.movies;

import chess;

public class Castling extends Move {

 void doMove(Square s) {

 if (pieces.King.wasCasling()) return;

 if (pieces.Rook.wasMoved()) return;

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

81

Импорт статических методов классов

в Java8

• Пакет java.lang импортируется по умолчанию.

package samples;

//import java.lang.Math;

public class StaticImportSample {

public static void main(String[] args) {

Math.sin(Math.PI);

}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

82

Импорт статических методов классов

 в Java8

• Предложение import используется для импорта
статической функции sin и статического поля PI класса
Math.

package samples;

import static java.lang.Math.sin;

import static java.lang.Math.PI;

public class StaticImportSample {

public static void main(String[] args) {

sin(PI);

}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

83

Импорт статических методов классов

 в Java8

• Предложение import используется для импорта всех
статических методов и полей класса Math.

package samples;

import static java.lang.Math.*;

public class StaticImportSample {

public static void main(String[] args) {

sin(PI);

}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

84

Пакеты ядра Java (1)

• java.lang
- неявно импортируется во все пакеты
- предоставляет фундаментальные классы языка
программирования Java (Object, String, StringBuffer, …)

• java.util
- библиотека классов-коллекций
- модель для программирования событий
- классы для работы с датами и временем
- классы для локализации программ на различных
национальных языках

• java.io
- работа через потоки ввода/вывода
- сериализация
- работа с файловой системой

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

85

Пакеты ядра Java (2)

• java.math
- стандартные математические функции
- работа с большими целыми числами BigInteger
- работа с большими вещественными числами BigDecimal

• java.sql
- классы для анализа структуры реляционной базы
данных
- классы для выполнения запросов к базе данных на
языке SQL

• java.text
классы и интерфейсы для обработки текста, дат, чисел
способом независимым от национальных языков

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

86

Наследование в языке Java

• Понимание наследования полей и методов

• Знакомство с иерархией классов

• Как подклассы специализируют классы

• Как выполняется поиск метода

• Как создаются и используются подклассы

• Понимание полиморфизма

• Рефакторинг в иерархии наследования

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

87

Иерархии классов

• Каждый объект принадлежит
классу (является экземпляром
класса)

• Каждый класс (кроме класса
Object) имеет суперкласс

• Корень всей иерархии классов
– класс Object.

• При определении нового
класса

Object

Number

Integer

Integer zero = new Integer(0);

«instantiate»

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

88

Специализация и обобщение

• Подкласс есть специализация
его суперкласса

• Суперкласс есть обобщение его
подклассов.

• Общее состояние и поведение
подкласса перемещается в
суперкласс и становится
доступным всем подклассам

Object

Number

Integer

Integer

byteValue()
doubleValue()
floatValue()
intValue()

longValue()
shortValue()

equals(Object)

Float Byte

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

89

Множественное наследование

• Множественное наследование в языке Java не
поддерживается

• Каждый класс, за исключением класса Object, имеет
только один непосредственный суперкласс

• Для реализации множества общих методов различными
классами можно использовать не только наследование, но
и реализацию классами интерфейсов

Mother

Sun

Father Mother

Sun

Father

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

90

Наследование полей и методов

• Каждый подкласс наследует поля
суперкласса и всех классов
расположенных выше в иерархии
наследования

• Каждый подкласс наследует
методы суперкласса. Объект будет
понимать все сообщения (вызов
методов) его класса и суперклассов

Object

Number

Integer

Integer

byteValue()

doubleValue()

floatValue()

intValue()

longValue()

shortValue()

equals(Object)

Integer zero = new Integer(0);

if (zero.equals(x)) {

 byte b = zero.byteValue();

 …

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

91

Модификаторы доступа

• Поля и методы в Java имеют ограничения по доступу,
описываемые следующими модификаторами:
 private – доступ ограничен классом в котором объявлен
данный член класса
 private int x;

 умалчиваемый (без модификатора) – доступ ограничен
пакетом, в котором данный класс объявлен
 int y;

 protected – доступ ограничен пакетом, в котором данный

класс объявлен, и подклассами данного класса
 protected void setName(String name) {…}

 public – доступ для всех классов всех пакетов
 public String getName() {…}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

92

Перекрытие наследуемых методов

• Имеется возможность дополнить или изменить
поведение суперкласса перекрытием в подклассе
унаследованного метода

• Перекрывающие метод должен иметь то же имя и список
параметров (сигнатуру)

• Метод подкласса может заменять или уточнять метод
суперкласса

public class MyClass extends Object {

 public boolean equals(Object o) {

 if (o==null)

 …

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

93

Ограничения на перекрытие методов

• Список параметров должен совпадать со списком
параметров перекрываемого наследуемого метода
суперкласса

• Тип возвращаемого результата должен совпадать с
типом возвращаемого результата метода суперкласса

• Модификатор доступа в суперклассе не может быть
более ограничительным, чем модификатор доступа в
подклассе

Пример. При перекрытии метода с модификатором protected,
новый метод может быть protected или public, но не private

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

94

Наследование и статические методы

• Класс может использовать статические методы
унаследованные от суперклассов и собственные
статические методы

• Статические методы не могут быть перекрыты

static String t = "test";

public static String superTest(String s) {

 s += " was the arg.";

 return s;

}

public static void main(String[] args){

 System.out.println(superTest(t));

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

95

Наследование и конструкторы

• Вызываться могут только конструкторы класса,
экземпляр которого создается, либо конструктор
непосредственного суперкласса

• Для вызова конструктора суперкласса используется
ключевое слово super и список параметров конструктора

• Для вызова конструктора того же класса используется
ключевое слово this и список параметров конструктора

• Первой строкой конструктора может быть одна из:
 this()

 super()

• Вызов конструктора через this() или super() допустим

только в конструкторе

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

96

Блоки инициализации. Инициализация

экземпляров класса

• Блок инициализации экземпляра вызывается до вызова
любого из конструкторов класса

• В классе может быть неограниченное количество блоков
инициализации

• Порядок расположения блоков инициализации в классе
не имеет значения

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

97

Полиморфизм

• Переменной может быть присвоен объект типа
переменной, либо объект типа – подкласс типа
переменной:

TextFile file = new TextFile();
TextFile file = new EncryptedFile();
TextFile file = new PropertiesFile();

• Любой объект может быть присвоен переменной типа
Object, поскольку он самый верхний в иерархии объектов

Object anything = new AnyType();

TextFile

Encrypted
File

Properties
File

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

98

Пример инициализации экземпляра класса

package geometry;

public class Point {

 int x, y;

 {

 x = 1;

 }

 public Point() { }

 {

 y = 1;

 }

}

Блок
инициализации

экземпляра

Порядок расположения
блоков инициализации

не важен

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

99

Блоки инициализации. Инициализация

статических полей класса

• Блок инициализации статических полей класса
вызывается до вызова любого из конструкторов класса

• В классе может быть неограниченное количество блоков
инициализации статических полей классов

• Порядок расположения в классе блоков инициализации
статических полей классов не имеет значения

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

100

Пример инициализации статических

полей класса

package graph;

public class Node {

 static Color defaultLineColor, defaultColorFill;

 static {

 defaultLineColor = Color.Blue;

 }

 public Node() { }

 static {

 defaultFillColer = Color.Cyan;

 }

}

Блок инициализации
статических полей

Порядок расположения
блоков инициализации

не важен

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

101

Вложенность классов

• Способ группирования классов используемых только в
одном месте. Вспомогательные классы внутри

• Увеличение инкапсуляции – вложенный класс работает
со скрытыми (private) полями и методами внешнего
(outer) класса.

• Получаемый код проще понимать – вложенные классы
обычно небольшие

• Получаемый код проще сопровождать – место
использования класса расположено близко к месту
объявления класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

102

Статические вложенные и внутренние

классы

class OuterClass {

 ...

 static class StaticNestedClass {

 ...

 }

 class InnerClass {

 ...

 }

}

Внешний класс

Статический вложенный
класс

Внутренний класс

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

103

Доступ к статическим вложенным

классам

class OuterClass {

 static class StaticNestedClass {

 }

} // class OuterClass

class MainClass {

 public static void main(String[] args) {

 OuterClass.StaticNestedClass nestedInstance

 = new OuterClass.StaticNestedClass();

 } // main

} // class MainClass

Внешний класс

Статический вложенный
класс

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

104

Внутренние классы

• Внутренние классы могут существовать только внутри
экземпляров внешнего класса

• Внутренние классы имеют прямой доступ к полям и
методам экземпляра класса

• Перед созданием экземпляра внутреннего класса
необходимо создать экземпляр внешнего класса

• Для внутренних классов можно задавать видимости:
public, private, protected

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

105

Доступ к внутренним классам

class OuterClass {

 class InnerClass {

 }

} // class OuterClass

class MainClass {

 public static void main(String[] args) {

 OuterClass outerInstance = new OuterClass();

 OuterClass.InnerClass innerInstance

 = outerInstance.new InnerClass();

 } // main

} // class MainClass

Внешний класс

Внутренний класс

Экземпляр внешнего
класса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

106

Внутренние локальные классы

• Внутренние локальные классы могут объявляются
внутри методов класса

• Внутренние локальные классы имеют доступ к
параметрам и локальным переменным класса

class OuterClass {

 public void outerMethod(int x) {

 int y;

 class InnerClass {

 } // class InnerClass

 } // outerMethod

} // class OuterClass

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

107

Внутренние анонимные классы

• Внутренние анонимные классы могут объявляются
внутри методов класса

• Имя анонимного класса не указывается
 class OuterClass {

 public void outerMethod(int x) {

 new Thread(new Runnable() {

 public void run() {

 ...

 }

 }).start();

 } // outerMethod

} // class OuterClass

Анонимный внутренний
класс реализующий метод
run интерфейса Runable

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Перечисления
в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

109

Типы-перечисления

• Типы-перечисления – это типы поля которых содержат
фиксированние множество констант

public enum BaseColor {

 RED, GREEN, BLUE

}

public class Test {

 static public void main(String[] args) {

 BaseColor color = BaseColor.RED;

 switch (color) {

 case RED: System.out.println("Red"); break;

 case BLUE: System.out.println("Blue"); break;

 } // switch

 } // main

} // class Test

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

110

Поля и методы типов-перечислений

public enum Color {

 RED(255, 0, 0),

 GREEN(0, 255, 0),

 BLUE(0, 0, 255),

 WHITE(255, 255, 255),

 BLACK(0,0,0);

 public int red, green, blue;

 public int getIntensity()

 { return red + green + blue; }

 Color(int red, int green, int blue) {

 this.red = red;

 this.green = green;

 this.red = blue;

 }

}// enum Color

Возможно использование
вне типа-перечисления

Возможно
использование
только внутри
перечисления

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

111

Поля и методы типов-перечислений

public enum Dirs {
LEFT_UP (-1, -1), UP (+0, -1), RIGHT_UP (+1, -1),
LEFT (-1, +0), RIGHT (+1, +0),
LEFT_DOWN(-1, +1), DOWN(+0, +1), RIGHT_DOWN (+1, +1);

public static final
Dirs[] ALL = {

LEFT_UP, UP, RIGHT_UP,
LEFT, RIGHT,
LEFT_DOWN, DOWN, RIGHT_DOWN

};

public int dv, dh;

Dirs(int dv, int dh) {

this.dv = dv;
this.dh = dh;

}
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Рефакторинг программ
на языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

113

Что такое рефакторинг

• Рефакторинг – процесс изменения программной системы
таким образом, что внешнее поведение кода не
изменяется, но внутренняя структура и архитектура
улучшаются

• Рефакторинг – преобразование исходного кода
сохраняющего поведение

Конечный

Исходный

код

Refactoring Начальный
Исходный

код

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

114

Для чего необходим рефакторинг

• Улучшение читаемости и понятности

• Улучшение расширяемости кода

• Добавление гибкости

• Улучшение производительности

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

115

Как и когда выполняется рефакторинг

• Основа рефакторинга – обобщение. Абстракции
находятся снизу вверх проверкой множества конкретных
примеров

• Поиск методов с различными именами, но имеющими
схожее поведение

• Параметризация различий у методов

• Разделение больших методов на методы меньшего
размера, но допускающие большее переиспользование

• Выполняется во время сопровождения, тестирования,
кодирования

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

116

Цикл рефакторинга

• Исходный код программы должен проходить через
фазы расширения и упорядочения

 Фаза расширения – код добавляется для реализации
новых функциональных требований

 Фаза упорядочивания – код удаляется и
преобразуется для улучшения структуры кода и
архитектуры системы

• За время жизни программы этот цикл повторяется
многократно

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

117

Распространенные причины отказа от

рефакторинга

• Изменение кода/проекта системы может привести его
нерабочее состояние
 Автоматизация тестирования позволит устранить эту
причину отказа системы

• Непонятно как система работает в данный момент
 В процессе рефакторинга система может быть
изучена
 Процесс рефакторинга можно документировать

 Недостаточно времени для выполнения рефакторинга
 Проведение рефакторинга позволит существенно
сократить время разработки на более поздних фазах
работы с программой

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

118

Методы рефакторинга

• Создание и удаление
 классов, методов, переменных

• Перемещение методов и переменных:
 вниз/вверх по иерархии наследования
 перемещение в другой класс

• Реорганизация
 Иерархии наследования
 Кода методов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

119

Использование среды Eclipse

как инструмента рефакторинга

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

120

Рефакторинг в Eclipse.

Переименование типа (1)

Среда Eclipse существенно упрощает
проведение рефакторинга

• Поиск в программе всех мест, где используется
переименовываемый тип

• Отображение предполагаемых изменений и их влияния
на программу

• Выполнение изменений

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

121

Рефакторинг в Eclipse.

Переименование типа (2)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

122

Рефакторинг в Eclipse.

Переименование типа (3)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

123

Рефакторинг в Eclipse.

Перемещение метода (1)

Piece

King

move(s: Square)
isPinning(p : Piece)

Pawn

Queen

isCorrect(s: Square)
isPinning(p : Piece)

Piece

King

move(s: Square)
isPinning(p : Piece)
isCorrect(s: Square)

Pawn

Queen

isPinning(p : Piece)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

124

Рефакторинг в Eclipse.

Перемещение метода (2)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

125

Рефакторинг в Eclipse.

Перемещение метода (3)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

126

Рефакторинг в Eclipse.

Перемещение метода (4)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

127

Рефакторинг в Eclipse.

Перемещение метода (5)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

128

Рефакторинг в Eclipse.

Использование полиморфизма (1)

• Замена имени класса-потомка
на имя класса-предка

• После этого программа работает со всеми
потомками класса-предка

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

129

Рефакторинг в Eclipse.

Использование полиморфизма (2)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

130

Рефакторинг в Eclipse.

Использование полиморфизма (3)

Queen

Piece Diagonal
Piece

Line Piece

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

131

Рефакторинг в Eclipse.

Использование полиморфизма (4)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

132

Контексто-зависимый рефакторинг.
Клавиши Alt + Shift + T

Преобразования применимые к классу ChessBoard

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

133

Контексто-зависимый рефакторинг.
Клавиши Alt + Shift + T

Преобразования применимые к методу paintControl

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

134

Контексто-зависимый рефакторинг.
Клавиши Alt + Shift + T

Преобразования применимые к выделенному тексту

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Исключения и утверждения
в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

136

Исключения в языке Java.

Что изучается

• Как исключения используются для сигнализации об ошибках

• Как использовать конструкции try и catch для обработки
исключений

• Как порождать исключения

• Как использовать предложение assert

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

137

Исключения в языке Java.

Определение

• Исключение

 Событие или условие которое нарушает нормальных ход
выполнения программы
 Условие, которое приводит к порождению (throw)
исключения системой
 Поток управления прерывается и обработчик исключения
будет перехватывать (catch) исключение

• Обработка исключения объектно-ориентированная

 Локализует в объекте стандартные условия выполнения
программы
 Предоставляет простой способ сделать программу более
надежной
 Позволяет разделить нормальный и ненормальный ход
выполнения программы

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

138

Исключения в языке Java.

Источники исключений

 • Источник исключений виртуальная машина Java
 Не может быть загружен класс
 Используется нулевая (null) ссылка на объект

• Ситуацию может породить и код, который пишет программист,
и класс, который программист использует

 IOError
 Деление на ноль
 Проверка корректности данных
 Исключение обусловленное логикой работы программы

• Если исключение не перехвачено, оно завершает работу
программы

float sales = getSales();

int staffsize = getStaff().size;

float avg_sales = sales/staffsize;

System.out.println(avg_sales);

 Деление на 0
порождает ситуацию

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

139

Исключения в языке Java.

Иерархия исключений

 • Throwable – базовый класс, предоставляющий общий
интерфейс и реализацию большинства исключений

Object

Throwable
getMessage()

printStackTrace()

Error Exception

RuntimeException

• Error – отмечает серьезные проблемы,
которые не могут быть перехвачены

• Exception – описывает класс
условий, которые должны быть
перехвачены или описаны как
порождаемые

• RuntimeException – это
исключение может быть
порождено при нормальном
выполнении виртуальной машины

• ArithmeticException
• BufferOverflowException

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

140

Исключения в языке Java.

Обработка исключений

 • Порожденные исключения обрабатываются либо в методе, в
котором они были порождены, либо делегируются в
вызывающий метод

 Вызывающий метод

 ...

 Метод без

обработчика ошибок

ошибка...

 Вызывающий метод с

обработчиком ошибок

Метод без обработчика

ошибок

ошибка...

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

141

Исключения в языке Java.

Конструкции обработки исключений

 • throws – фрагмент объявления метода, содержащий список
исключений который могут быть делегированы вверх по стеку
вызовов

 public int doIt() throws SomeException, …

• try – представляет блок кода с присоединенными
обработчиками ошибок. Ошибки в try-блоке будут обработаны
обработчиками ошибок

• catch – блок кода для обработки конкретного исключения

• finally – необязательный блок который следует после блоков
catch. Выполняется всегда независимо от того, какое
исключение порождено и было ли оно порождено

• throw – явно порождает исключение
 throw new SomeException();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

142

Исключения в языке Java.

Блоки try и catch

• Используются для обработки исключений

• Код, который может породить ошибку, заключается в блок try

• Сразу за блоком try должен идти блок catch

try {

 // код выполняющий чтение из файла

}

catch (IOException ioe){

 // код обрабатывающий ошибки ввода/вывода

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

143

Исключения в языке Java.

Блок catch

• Блок catch всегда содержит один аргумент определяющий тип
перехватываемого исключения

• Аргументом может быть ссылка на объект класса Throwable
или подкласс этого класса

• За одним блоком try может идти несколько блоков catch

try {

 // код выполняющий чтение из файла

}

catch (FileNotFound fnf) {

 // код обрабатывающий ошибку файл не найден

}

catch (IOException ioe){

 System.out.println(”I/O error " + e.getMessage());

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

144

Исключения в языке Java.

Блок finally

• Блок finally необязателен. Выполняет действия независимо от
того, было порождено исключение или нет

• Могут быть блоки try и finally без блоков catch

• Блок catch выполняется после любого блока catch, даже
после того, который содержит предложение return

try {

 // код выполняющий чтение из файла

}

catch (FileNotFound fnf) {

 // код обрабатывающий ошибку файл не найден

}

finally{

 // закрытие файла

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

145

Исключения в языке Java.

Предложение throw

• Предложение может быть использовано в блоке try при
необходимости порождения исключения

• Предложение throw требует только одного аргумента –
объекта класса, являющегося потомком класса Throwable

• Для того, что бы инкапсулировать условие, создается новый
экземпляр класса Throwable

• Поток управления завершается немедленно после
предложения throw

throw new java.io.IOException(“msg”);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

146

Исключения в языке Java.

Предложение throw

 • Перехват исключения в вызывающем методе

public class ThrowDemo {

public void demoThrowMethod(int n) throws Exception {

 if (n < 0)

 throw new Exception("n < 0");

}

public static void main(String[] args) {

 ThrowDemo app = new ThrowDemo();

 try {

 app.demoThrowMethod(-1);

 } catch (Exception e) {

 System.err.println(e.getMessage());

 }

}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

147

Исключения в языке Java.

Предложение throw

 • Перехват исключения в порождающем ситуацию методе

public class ThrowDemo {

public void demoThrowMethod(int n) {

 try {

 if (n < 0)

 throw new Exception("n < 0");

 } catch (Exception e) {

 System.err.println(e.getMessage());

 }

}

public static void main(String[] args) {

 ThrowDemo app = new ThrowDemo();

 app.demoThrowMethod(-1);

}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

148

Исключения в языке Java.

Предложение throw

 public void doMove() throws GameOver {
target.setPiece(piece);
changeCapturedColor();

Board board = target.getBoard();

List<Square> empties = board.getEmptySquares();
if (!empties.isEmpty()) return;

int enemies = piece.getEnemies().size();
int friends = piece.getFriends().size();

if (enemies == friends)

throw new GameOver(GameResult.DRAWN);
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

149

Утверждения в языке Java.

Когда использовать утверждения

 • Не рекомендуется использовать утверждения

 Для проверки аргументов в публичных методах. Для этого
требуются RuntimeException, например
IllegalArgumentException

• Рекомендуется использовать утверждения для проверки

 Внутренних инвариантов (значения, которые никогда не
должны возникать). Например, вставить default: assert
false в конец выбирающего предложения

 Инварианты потоков управления. Например, вставить
assert false в те части программы, которые никогда не
должны быть достигнуты

 Предусловия, постусловия и инварианты классов.
Например, проверка аргументов скрытых методов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

150

Утверждения в языке Java.

Использование утверждений

• Две формы утверждений

assert <boolean expression> ;

assert <boolean expression> : <value expression> ;

• Если утверждение ложно
 первая форма утверждения порождает исключение
AssertionError без сообщений
 вторая форма утверждения порождает исключение
AssertionError с сообщением, определенным при вычислении
второго выражения

• По умолчанию утверждения не работают (игнорируются). Для их
включения необходимо в командной строке для компилятора java
использовать ключ enableassertions

• Утверждения включаются/выключаются для
классов/пакетов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

151

Утверждения в языке Java.

Использование утверждений

• Две формы утверждений

assert <boolean expression> ;

assert <boolean expression> : <value expression> ;

• Если утверждение ложно
 первая форма утверждения порождает исключение
AssertionError без сообщений
 вторая форма утверждения порождает исключение
AssertionError с сообщением, определенным при
вычислении второго выражения

• По умолчанию утверждения не работают (игнорируются). Для
их включения необходимо в командной строке java
использовать ключ enableassertions

• Утверждения включаются/выключаются для классов/пакетов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Интерфейсы в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

153

Интерфейсы в языке Java.

Объявление интерфейса

• Интерфейс – именованный список объявлений методов
 Методы только объявляются, а не реализуются
 Интерфейс похож на абстрактный класс, но тем не менее
отличается от него

• Объявляемые в Java типы либо классы, либо интерфейсы,
либо перечисления

• Интерфейс можно трактовать как контракт – обязательство
объектов реализовать некоторый набор услуг

package game.moves;

interface Move {

 void doMove();

 void undoMove();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

154

Интерфейсы в языке Java.

Иерархия интерфейсов (1)

• Между интерфейсами возможно отношение наследования

• Интерфейс, расширяющий другой интерфейс, наследует все
объявления методов интерфейса - предка

• Иерархия наследования интерфейсов независима от иерархии
наследования классов

public interface IPutMove extends Move {
 /**
 * Вернуть клетку куда пошла фигура.
 */
 Square getTarget();
}

public interface ITransferMove extends Move {
Square getSource();
Square getTarget();

}

public interface ICaptureMove extends Move {
/**
 * Вернуть клетки на которых стоят захваченные фигуры.
 */
List<Square> getCaptured();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

155

Интерфейсы в языке Java.

Реализация интерфейсов классом

 package chess.moves;

public class Promotion implements ITransferMove , ICaptureMove {

 void doMove() {
 //…
}
void undoMove() {

// …
}
Square getSource() {

// …
}
Square getTarget() {

// …
}
List<Square> getCaptured() {

// …
}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

public interface ICaptureMove extends Move {
List<Square> getCaptured();

}

public interface ITransferMove extends Move {
Square getSource();
Square getTarget();

}

156

Интерфейсы в языке Java.

Реализация интерфейса

• Методы объявленные в интерфейсе реализуются в классе,
поддерживающим данный интерфейс

Реализация

Определение

package reversi.moves;

public class Capture implements ITransferMove ,

ICaptureMove {

 void doMove() { … }
 void undoMove() { … }
Square getSource() { … }
Square getTarget() { … }
List<Square> getCaptured() { … }

}

Определение

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

157

Интерфейсы в языке Java.

Синтаксис реализации интерфейса

• Объявление суперкласса всегда предшествует объявлению
интерфейсов реализуемых классом:

public class Directory extends Secure

 implements File {

 ...

}

• Если класс реализует несколько интерфейсов, то имена этих
интерфейсов перечисляются через запятую:

public class Directory

 implements File, ISecure {

 ...

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

158

Интерфейсы в языке Java.

Типизация и интерфейсы

• Типом переменной и параметра может быть интерфейс

• Переменной и параметру может быть присвоен только объект,
реализующий этот интерфейс

• Переменная и параметр могут быть использованы только для
вызова методов, определенных в интерфейсе

• Имя интерфейса не может быть в выражении new

Move m1 = new Move(); // Ошибка

Move m2 = new Castling(); // Допустимо

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

159

Интерфейсы в языке Java.

Использование интерфейсов (2)

• Использование интерфейсов позволяет

 Использовать полиморфизм независимо от иерархии
классов

 Осуществлять доступ к методам в отдельных независимых
деревьях классов

 Использовать в переменных и параметрах объекты не
связанные иерархией наследования классов

• Классы, реализующие один и тот же интерфейс, понимают те
же самые сообщения независим от положения в иерархии
классов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

160

Интерфейсы в языке Java.
Соглашения об именах интерфейсов

• Суффикс “able” в именах интерфейсов
 Cloneable, Serializable

• Существительное + Impl
 Bank, BankImpl
 BankAccount, BankAccountImpl

• Префикс I перед существительным
 Bank, IBank
 BankAccount, IBankAccountImpl

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

161

Интерфейсы в языке Java.

Использование интерфейсов (2)

• Программист может определить параметры метода как
интерфейсы

 Это ограничит использование этих параметров только
типами, которые реализуют этот интерфейс

 Более четкое указание программисту какие методы он
может использовать

• Увеличивает повторное использование кода, использующего
преимущественно типы - интерфейсы

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

162

Вложенные классы и интерфейсы

• Допускается вложенность интерфейсов в классы и другие
интерфейсы

• Вложенность классов и интерфейсов – дополнительный способ
структурирования программы. Вложенность возможна не только
в пакеты.

• Вложенные интерфейсы могут иметь видимости как у полей и
методов классов и интерфейсов
 public
 protected
 private

 package

• Вложенные классы имеют доступ к полям и методам
охватывающих классов и интерфейсов.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Коллекции в языке JAVA

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

164

Коллекции языка Java.

Что изучается

 • Понимание основных понятий коллекций

• Оценка основных интерфейсов коллекций

 интерфейсы
 абстрактные типы
 конкретные реализации

• Понять как "устаревшие" классы и интерфейсы связаны с
новыми интерфейсами и классами

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

165

Коллекции языка Java.

Что такое коллекция

 • Коллекция – это объект который группирует несколько
элементов в единую сущность

• Массивы языка Java также рассматриваются как коллекции

• Виды коллекций
 Set (множество) – не может иметь повторяющиеся
элементы. Например, книги в библиотеке

 List (список) – упорядоченная коллекция, может содержать
повторения. Например, список чисел

 Map (карта) – объекты, которые отображают ключи на
значения. Дублирование ключей недопустимо. Например,
словарь, список свойств

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

166

Коллекции языка Java.

Java Collection Framework

 • JCF - унифицированная архитектура для представления и
манипулирования коллекциями

• Состоит из трех частей
 Интерфейсы
 Реализации
 Алгоритмы

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

167

Коллекции языка Java.
Интерфейсы, реализации, алгоритмы

 • Интерфейсы – абстрактные типы данных представляющие
коллекции. Назначение коллекций:

 позволить манипулирование коллекциями независимо от
их деталей их представления

 предоставить точки расширения для добавления новых
типов коллекций и из реализаций

• Реализации – конкретная реализация интерфейса коллекции

• Алгоритмы – методы, выполняющие полезные вычисления
над объектами, которые реализуют интерфейс коллекций.
Например, поиск и сортировку.

 Предоставляют повторно используемую функциональность
посредством полиморфизма – один алгоритм для разных
реализаций

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

168

Коллекции языка Java.
Достоинства использования JCF

 • Уменьшает усилия по программированию

• Уменьшает усилия по изучению и использованию нового API

• Увеличивает скорость и надежность программы

• Допускает переносимость среди связанных API

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

169

Коллекции языка Java.
Интерфейсы в коллекциях

Collection

List Set

SortedSet

Iterator

ListIterator

Enumeration

Map

SortedMap

Comparable

Comparator

java.lang.Iterable

Queue

Deque

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

170

Коллекции языка Java.
Интерфейс Collection

boolean add(Object o)

boolean addAll(Collection c)

void clear()

boolean contains(Object o)

boolean containsAll(Collection c)

boolean equals(Object o)

int hashCode()

boolean isEmpty()

Iterator iterator()

boolean remove(Object o)

boolean removeAll(Collection c)

boolean retainAll(Collection c)

int size()

Object[] toArray()

Object[] toArray(Object[] a)

Collection

• Этот универсальный интерфейс для
изменения коллекций и прохода по
элементам коллекций

• Проверки принадлежности элемента к
коллекции

• Добавления элемента к коллекции

• Удаления элемента из коллекции

java.lang.Iterable

Iterator iterator()

Collection c;

for(Object o : c) {

 System.out.println(o);

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

171

Коллекции языка Java.

Интерфейс списка

void add(int index, Object element)

boolean addAll(int index, Collection c)

Object get(int index)

int lastIndexOf(Object o)

ListIterator listIterator(int index)

Object remove(int index)

Object set(int index, Object element)

List subList(int fromIndex, int toIndex)

Collection

List Set

SortedSet

Queue

Deque

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

172

Коллекции языка Java.
Интерфейс очереди Queue

Collection

List Set

SortedSet

Queue

Deque

boolean add(Object e);
Object element();
boolean offer(Object e);
Object peek();
Object poll();
Object remove();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

173

Коллекции языка Java.
Интерфейс очереди Queue

 Queue

boolean add(Object e);
Object element();
boolean offer(Object e);
Object peek();
Object poll();
Object remove();

Порождение ситуации Возвращается
значение или null

Вставка boolean add(Object e) boolean offer(Object e)

Удаление Object remove() Object poll()

Проверка Object element() Object peek()

Действия по добавлению, удалению и
проверки элемента в очереди.

Различие – что делается если действие
выполнить невозможно

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

174

Коллекции языка Java.
Интерфейс очереди Queue

 boolean add(E e)
Вставляет указанный элемент в эту очередь, если это возможно
сделать немедленно, не нарушая ограничения емкости,
возвращая значение true в случае успеха и вызывая
исключение IllegalStateException, если в настоящее время
нет свободного места.
E element()
Извлекает, но не удаляет заголовок этой очереди. Этот метод
отличается от peek только тем, что выдает исключение, если
эта очередь пуста.
Возвращает: заголовок этой очереди
Порождает ситуацию IllegalStateException если очередь
пуста.
E remove()
Возвращает, удаляя, элемент в заголовке очереди.
Порождает ситуацию IllegalStateException если очередь
пуста.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

175

Коллекции языка Java.
Интерфейс очереди Queue

 boolean offer(E e)
Вставляет описанный элемент в очередь, если возможно
сделать это немедленно без нарушения ограничений по
плотности.
Возвращает значение true если вставка прошла успешно и
false иначе.

E peek()
Возвращает, не удаляя, элемент в заголовке очереди.
Возвращает null если очередь пуста.

E poll()
Возвращает, удаляя, элемент в заголовке очереди.
Возвращает null если очередь пуста.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

176

Коллекции языка Java.
Интерфейс очереди Deque (1)

Deque

boolean addFirst(Object e);
Object elementFirst ();
boolean offerFirst (Object e);
Object peekFirst ();
Object pollFirst ();
Object removeFirst ();

Ситуация Значение или null

Вставка boolean addFirst(Object e) boolean offerFirst(Object e)

Удаление Object removeFirst() Object pollFirst()

Проверка Object elementFirst() Object peekFirst()

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

177

Коллекции языка Java.
Интерфейс очереди Deque (2)

Deque

boolean addLast(Object e);
Object elementLast ();
boolean offerLast (Object e);
Object peekLast ();
Object pollLast ();
Object removeLast ();

Ситуация Значение или null

Вставка boolean addLast(Object e) boolean offerLast(Object e)

Удаление Object removeLast() Object pollLast()

Проверка Object elementLast() Object peekLast()

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

178

Коллекции языка Java.
Интерфейс Map

void clear()
boolean containsKey(Object key)
boolean containsValue(Object value)
Set entrySet()
boolean equals(Object o)
Object get(Object key)
int hashCode()
boolean isEmpty()
Set keySet()
Object put(Object key)
void putAll(Map t)
Object remove(Object key)
int size()
Collection values()

Map • Карта отображает ключи на
значения

• Добавление/удаление пары ключ-
значение

• Взять значение для данного
ключа

• Проверить наличие элемента в
карте

• Можно рассматривать карту как:
 Множество ключей
 Множество пар ключ-значение
 Коллекцию значений

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

179

Сравнение объектов.

Упорядочивание объектов

• Для сортировки объектов в коллекциях, необходим способ
упорядочивания объектов

 Объект А идет перед объектом В
 Объект B идет перед объектом А
 Объект А и объект B равны

• Существует два способа упорядочения объектов при
сортировке:

 Интерфейс Comparable
 Интерфейс Comparator

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

180

Сравнение объектов.
Интерфейсы Comparable и Comparator

• Интерфейс Comparable

 Реализуют классы, объекты которых способны сравнить
себя с другими объектами сами
 Такие классы называются классами с естественным
упорядочиванием

• Интерфейс Comparator
 Реализует класс, назначение которого сравнивать один
объект с другим
 Два объекта могут сравниваться по разному

Comparable Comparator

int compareTo(Object o) int compare(Object o1, Object o2)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

181

Сортированные коллекции.

• SortedSet (Сортированное Множество) – это множество (Set) с
встроенным и автоматически поддерживаемым упорядочением

 Существуют методы для использования этого порядка

• SortedMap (Сортированная Карта) – это карта (Map) имеет
аналогичные свойства, основанные на упорядочении ключей
карты

Set

SortedSet

Comparator comparator()
Object first()
Object last()
SortedSet headSet(Object to)
SortedSet subSet(Object from, Object to)
SortedSet tailSet(Object from)

• Порядок может определяться
как c помощью естественного
порядка, так и с помощью
класса реализующего
интерфейс Comparator

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

182

Итераторы.

Iterator

ListIterator

• Итератор предоставляет удобный
способ перебора элементов коллекции

• ListIterator – добавляет методы
представляющие последовательность
элементов этой коллекции

• Методы add и remove позволяют
изменять коллекцию во время ее
прохода

• Итераторы для сортированных
коллекций учитывают порядок
заданный при сортировке

boolean hasNext()
Object next()
void remove()

void add(Object o)
boolean hasPrevious()
int nextIndex()
Object previous()
int previousIndex()
void set(Object o)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

183

Шаблон кода итератора.

Collection c;

Iterator i = c.iterator();

while (i.hasNext()) {

 Object o = i.next();

 System.out.println(o);

}

Iterator

ListIterator

boolean hasNext()
Object next()
void remove()

void add(Object o)
boolean hasPrevious()
int nextIndex()
Object previous()
int previousIndex()
void set(Object o)

Collection

Iterator iterator()

List Set

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

184

Итератор встроенный в язык Java.

Collection c;

//…

for(Object o : c) {

 // process this object

}

Iterator

ListIterator

boolean hasNext()
Object next()
void remove()

void add(Object o)
boolean hasPrevious()
int nextIndex()
Object previous()
int previousIndex()
void set(Object o)

Collection

Iterator iterator()

List Set

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

185

Интерфейсы и реализации.

Реализации

Хэш

таблица

Массив Дерево Связанный
список

Устаревшие

И
н
т
е
р
ф
е
й
с
ы

Set HashSet TreeSet

List ArrayList LinkedList Vector, Stack

Map

HashMap TreeMap HashTable,
Properties

Queue ArrayDeque LinkedList

Deque ArrayDeque LinkedList

Рекомендация: при кодировании использовать интерфейсы, а не реализацию

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

186

Пример. Использование карты.

Частота слов в командной строке

public class MapExample {

 public static void main(String args[]) {

 Map map = new HashMap();

 Integer ONE = new Integer(1);

 for (String key : args) {

 Integer frequency = (Integer) map.get(key);

 if (frequency == null) {

 frequency = ONE;

 } else {

 int value = frequency.intValue();

 frequency = new Integer(value + 1);

 }

 map.put(key, frequency);

 }

 System.out.println(map);

 Map sortedMap = new TreeMap(map);

 System.out.println(sortedMap);

 }

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

187

Пример. Использование карты в Java8.

Частота слов в командной строке

public class MapExample {

public static void main(String args[]) {

Map<String, Integer> map = new HashMap<>();

for (String key : args) {

int frequency = !map.containsKey(key) ? 1 : map.get(key) + 1;

map.put(key, frequency);

}

System.out.format("HashMap: %s %n%n", map);

Map<String, Integer> sortedMap = new TreeMap<>(map);

System.out.format("TreeMap: %s %n%n", sortedMap);

 // …

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

188

Пример. Использование карты в Java8.

Частота слов в командной строке

System.out.format("Keys: %s %n%n", sortedMap.keySet());

System.out.format("Values: %s %n%n", sortedMap.values());

System.out.format("EntrySet: %s %n%n", sortedMap.entrySet());

for (Entry<String, Integer> entry : sortedMap.entrySet()) {

System.out.format("Город: %10s Частота=%d %n",

entry.getKey(),

entry.getValue());

}

}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

189

Пример. Использование карты.

Частота слов в командной строке

HashMap: {Петербург=1, Тула=2, Москва=3}

TreeMap: {Москва=3, Петербург=1, Тула=2}

Keys: [Москва, Петербург, Тула]

Values: [3, 1, 2]

EntrySet: [Москва=3, Петербург=1, Тула=2]

Город: Москва Частота=3

Город: Петербург Частота=1

Город: Тула Частота=2

Москва Тула Москва Петербург Москва Тула

Ввод

Вывод

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

190

Сравнение реализаций.

Множества и карты

• Set / Map

 HashSet / HashMap

• Очень быстрая, без упорядочения

• Выбирается начальная плотность (initial capacity) и
коэффициент загрузки (load factor) для улучшения
представления

 TreeSet / TreeMap

• Хранит сбалансированное дерево, хорошо для
сортированных вставок

• Нет параметров настройки

 HashTable

• Синхронизирована

• Рекомендуется использовать через интерфейс Map

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

191

Сравнение реализаций.

Списки

• List

 ArrayList

• Очень быстрый

• Можно использовать «native» метод System.arraycopy

 LinkedList

• Хорошо использовать для меняющихся коллекций или
для вставки в начало списка (для очередей Queue и
Deque)

 Vector

• Синхронизированный

• Рекомендуется использовать через интерфейс List

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

192

Сравнение реализаций.

Списки

• Queue и Deque

 LinkedList

• Хорошо использовать для меняющихся коллекций или
для вставки в начало списка (для очередей Queue и
Deque)

 DeckArray

• Очень быстрый

• Если не надо уделять элементы из середины

• Можно использовать «native» метод System.arraycopy

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

193

Сравнение реализаций.

Устаревшие коллекции

• Классы устаревший коллекций по прежнему доступны, но их
реализации были изменены.

 java.util.Vector

• Расширяемый индексируемый список

 java.util.Stack

• Расширяет вектор операциями push и pop

 java.util.BitSet

• Расширяемое множество «флагов» True/False

 java.util.Dictionary

• Этот класс заменен на java.util.Map

 java.util.Hashtable

• Эффективное хранение данных без сортировки

 java.util.Properties

• Хранит пары ключ-значение. Ключ есть имя свойства.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

class Point implements Comparable<Point> {

public int x, y;

static public Point p0 = new Point(0, 0);

public Point(int x, int y)

{ this.x = x; this.y = y; }

public int compareTo(Point p) {

double d = p0.distance(p) - p0.distance(this);

return d == 0 ? 0 : (d > 0 ? -1 : 1) ;

}

private double distance(Point p) {

int dx = x - p.x; int dy = y - p.y;

return Math.sqrt(dx*dx + dy*dy);

}

}

194

Коллекции языка Java.
Интерфейсы в коллекциях. Comparable

 Comparable

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

public class ComparableExample {

public static void main(String args[]) {

SortedSet<Point> points = new TreeSet<>();

points.add(new Point(10, 9));

points.add(new Point(2, 2));

points.add(new Point(1, 3));

for (Point p : points)

System.out.format("(%2s, %2s) %n", p.x, p.y);

}

}

195

Коллекции языка Java.
Интерфейсы в коллекциях. Comparable

 Comparable

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

(2, 2)
(1, 3)
(10, 9)

196

Коллекции языка Java.
Интерфейсы в коллекциях. Comparable

 Comparable

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

class Person {

public String name;

public int age;

public Point location;

public Person(String name, int age, Point location) {

this.name = name;

this.age = age;

this.location = location;

}

public String toString() {
return String.format("name=%7s age=%7s, location=(%2s, %2s)%n",

name, age, location.x, location.y);

}

}

197

Коллекции языка Java.
Интерфейсы в коллекциях. Comparator

Comparator

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

public class ComparatorExample {

public static void main(String args[]) {

List<Person> persons = new ArrayList<>();

persons.add(new Person("Bill", 19, new Point(40, 50)));

persons.add(new Person("Alex", 9, new Point(60, 40)));

persons.add(new Person("John", 3, new Point(10, 90)));

persons.sort (new Comparator<Person>() {

public int compare(Person p1, Person p2) {

return p1.name.compareTo(p2.name);

}

});

System.out.println();

for (Person p : persons)

System.out.print("by name: " + p);

198

Коллекции языка Java.
Интерфейсы в коллекциях. Comparator

Comparator

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

persons.sort(new Comparator<Person>() {

@Override

public int compare(Person p1, Person p2) {

int d = p1.age - p2.age;

return d == 0 ? 0 : (d > 0 ? 1 : -1);

}

});

System.out.println();

for (Person p : persons)

System.out.print("by age: " + p);

199

Коллекции языка Java.
Интерфейсы в коллекциях. Comparator

Comparator

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

persons.sort(new Comparator<Person>() {

@Override

public int compare(Person p1, Person p2) {

return p1.location.compareTo(p2.location);

}

});

System.out.println();

for (Person p : persons)

System.out.print("by location: " + p);

200

Коллекции языка Java.
Интерфейсы в коллекциях. Comparator

Comparator

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

201

Клонирование коллекций

• Для большинства коллекций можно сделать копию, не создавая
копию для хранимых объектов («неглубокое» копирование)

clone()

Коллекция1

Хранимые

объекты

Коллекция2

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

202

Алгоритмы. Класс Collections

• java.util.Collections содержит только статические методы для
работы с коллекциями или для создания коллекций. Он
содержит:

 Полиморфные алгоритмы для работы с коллекциями,
например:

• binarySearch

• copy

• min и max

• replace

• reverse

• rotate

• shuffle

• sort

• swap

 «Обертки» – возвращают новые коллекции на основе
имеющихся

• Синхронизированные коллекции

• Не модифицируемые коллекции

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

List<String> strings = new ArrayList<>();

Collections.addAll(strings, "Moscow", "London", "Berlin");

System.out.println("До: " + strings);

Collections.sort(strings);
System.out.println("После: " + strings);

203

Алгоритмы. Класс Collections.

Добавление строк и сортировка

До: [Moscow, London, Berlin]

После: [Berlin, London, Moscow]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

List<String> strings = new ArrayList<>();

String[] cities = { "Moscow", "London", "Berlin" };

Collections.addAll(strings, cities);

System.out.println("До: " + strings);

Collections.sort(strings);
System.out.println("После: " + strings);

204

Алгоритмы. Класс Collections.

Добавление массива строк и сортировка

До: [Moscow, London, Berlin]

После: [Berlin, London, Moscow]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Comparator<String> comparator = new Comparator<String>(){
public int compare(String s1, String s2) {

return s1.compareToIgnoreCase(s2);
}

};

List<String> strings = new ArrayList<>();

String[] cities = { "Moscow", "berlin", "London", "moscow", "Berlin" };

Collections.addAll(strings, cities);

System.out.println("До: " + strings);

Collections.sort(strings, comparator);
System.out.println("После: " + strings);

205

Алгоритмы. Класс Collections.

Сортировка без учета регистра

До: [Moscow, berlin, London, moscow, Berlin]

После: [berlin, Berlin, London, Moscow, moscow]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Comparator<String> comparator = new Comparator<String>(){
public int compare(String s1, String s2) {

return s1.compareToIgnoreCase(s2);
}

};

List<String> strings = new ArrayList<>();

String[] cities = { "Moscow", "berlin", "London", "moscow", "Berlin" };

Collections.addAll(strings, cities);

System.out.println("До: " + strings);

Collections.sort(strings, comparator);
System.out.println("После: " + strings);

206

Алгоритмы. Класс Collections.
Java8 – переходим к ламбда-выражениям

До: [Moscow, berlin, London, moscow, Berlin]

После: [berlin, Berlin, London, Moscow, moscow]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Comparator<String> comparator = (a, b) -> a.compareToIgnoreCase(b);

List<String> strings = new ArrayList<>();

String[] cities = { "Moscow", "berlin", "London", "moscow", "Berlin" };

Collections.addAll(strings, cities);

System.out.println("До: " + strings);

Collections.sort(strings, comparator);
System.out.println("После: " + strings);

207

Алгоритмы. Класс Collections
Внешний сортировщик – лямбда выражение

До: [Moscow, berlin, London, moscow, Berlin]

После: [berlin, Berlin, London, Moscow, moscow]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

List<String> strings = new ArrayList<>();

String[] cities = { "Rome", "berlin", "Bern", "moscow", "Minsk" };

Collections.addAll(strings, cities);

System.out.println("До: " + strings);
Collections.sort(strings, (s1, s2) -> s1.length() - s2.length());
System.out.println("После: " + strings);

208

Алгоритмы. Класс Collections
Лямбда выражение в месте вызова сортировки

До: [Rome, berlin, Bern, moscow, Minsk]

После: [berlin, moscow, Minsk, Rome, Bern]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

public static void main(String[] args) {
List<String> strings = Arrays.asList(args);

strings.forEach(str -> System.out.format(" '%s'", str));

}

209

Алгоритмы. Класс Arrays
Лямбда выражение в месте вызова сортировки

'Moscow' 'London' 'Rome'

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

// Запрашиваем все правильные ходы на доске
// фигурами заданного цвета.
List<Move> correctMoves = getCorrectMoves(board, color);

// Случайным образом переставим ходы в списке
// чтобы игра не повторялась.
Collections.shuffle(correctMoves);

// В переменой brain хранится ссылка на класс реализующий
// интерфейс Comparator.
// Каждая программа-игрок сортирует ходы по своему.
correctMoves.sort(brain);

// После сортировке первый ход – лучший ход.
Move bestMove = correctMoves.get(0);

210

Алгоритмы. Класс Collections
Случайное расположение элементов коллекции

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Родовые типы в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

212

Родовые типы языка Java.

1. Необходимость родовых типов

• Безопасность типов. Контроль типов должен выполняться
на этапе компиляции.

Map m = new HashMap();
m.put("key", "blarg");
String s = (String) m.get("key");

Map m = new HashMap();
m.put("key", 1);
String s = (String) m.get("key");

• Удаление излишних преобразований типов. Текст
программы должен быть более читаемый и содержать
меньше ошибок.

• Код должен быть более эффективным по времени
выполнения.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

213

Родовые типы языка Java.

2. Пример использования родовых типов

• Объявление родового типа-интерфейса Map

Map<String, String> m = new HashMap<String, String>();

m.put("key", "blarg");

m.put("key", 1); // Ошибка компиляции.

String s = m.get("key");

public interface Map<K, V> {

 public void put(K key, V value);

 public V get(K key);

}

• Использование родового типа-интерфейса Map

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

214

Родовые типы языка Java.

3. Не ковариантность родовых типов

• Ковариантность массивов языка Java

List<Integer> intList = new ArrayList<Integer>();

List<Number> numberList = intList; // Ошибка компиляции

Integer[] intArray = new Integer[10];

Number[] numberArray = intArray;

• Не ковариантность родовых типов

• Number есть супертип для Integer.

 Но List<Number> не есть супертип List<Integer>

 Object супертип для List<Integer>

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

215

Родовые типы языка Java.
4. Wildcard (Неизвестный тип)

• Метод printList не работает с типом List<String>

void printList(List<Object> l) {
 for (Object o : l)
 System.out.println(o);
}

void printList(List l) {
 for (Object o : l)
 System.out.println(o);
}

• Метод printList работает только с типом List<Object>

• Метод printList работает со списком элементов
любого типа: List<Object>, List<Integer>, …

void printList(List<?> l) {
 for (Object o : l)
 System.out.println(o);
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

216

Родовые типы языка Java.
5. Родовые методы

• Родовые методы не обязательно должны быть у родовых типов.

• Родовые методы также имеют placeholders.

String s = ifThenElse(b, "a", "b");
Integer i = ifThenElse(b, new Integer(1), new Integer(2));

public <T> T ifThenElse(boolean b, T first, T second) {
 return b ? first : second;
}

• Пример: метод ifThenElse работает со всем типами,
если у 2-го и 3-го параметров типы одинаковые.

• Родовые методы приемлемы для статических методов, когда не
используются типы заданные для родового класса.

• Когда тип родового класса применяется только к методу.
В этом случае упрощается сигнатура родового класса.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

217

Родовые типы языка Java.

6. Ограниченные типы. Ограничение сверху

• Параметр типа V не ограничен

public class Matrix<V extends Number> { ... }

public class Matrix<V> { ... }

• Параметр типа V ограничен типом Number

Ограничение сверху.
V класс Number
и его потомки

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

218

Родовые типы языка Java.

6. Ограниченные типы. Ограничение снизу

public class A<V super Number> { ... }

• Параметр типа V ограничен типом Number

Ограничение снизу.
V класс Number

и его предки

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Java 8.

Владимир Юрьевич Романов
Московский Государственный Университет им. М.В.Ломоносова

Факультет Вычислительной Математики и Кибернетики
vromanov@cs.msu.su,

vladimir.romanov@gmail.com
http://master.cmc.msu.ru

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Java 8. Lambda - выражения

Владимир Юрьевич Романов

Московский Государственный Университет им. М.В.Ломоносова
Факультет Вычислительной Математики и Кибернетики

vromanov@cs.msu.su,
vladimir.romanov@gmail.com

http://master.cmc.msu.ru

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

221

Назначение Lambda-выражений

• Трактовать блоки кода как объекты

(данные)

• Это не только полезно, но и необходимо

• Lambda (λ)-выражение – это просто блок

кода с параметрами, которые необходимо

передать в блок (анонимная функция).

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

222

Обычные функции

• Могут получать объекты

• Могут создавать объекты

• Могут возвращать объекты

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

223

Функции высшего порядка

(появились в Java 8)

• Могут получать функции

• Могут создавать функции

• Могут возвращать функции

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

224

Пример: Lambda – выражение вместо
анонимного класса

public class RunnableTest {

public static void main(String[] a) {

 // Anonymous Runnable

 Runnable r = new Runnable() {

 @Override

 public void run(){

 System.out.println("Hello");

 }

 };

 r.run();

}

public class RunnableTest {

public static void main(String[] a){

 // Lambda Runnable

 Runnable r = () ->

 System.out.println("Hello");

 r.run();

}

Runnable r = new Runnable

 @Override

 public void run(){

 System.out.println("Hello");

 }

 }

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

225

Пример: Lambda – выражение вместо
анонимного класса

final String name = "John";
Button button = new Button();

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {
System.out.println("hi " + name);

}
});

final String name = "John";
Button button = new Button();

button.addActionListener(event -> System.out.println("hi " + name));

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

226

Пример: Lambda – выражение в операторе
сравнения при сортировке

List<Person> personList = Person.createShortList();

Collections.sort(personList,

 new Comparator<Person>(){

 public int compare(Person p1, Person p2){

 return p1.getName().compareTo(p2.getName());

 }

 }

);

List<Person> personList = Person.createShortList();

Collections.sort(personList,

 (Person p1, Person p2) ->

 p1.getSurName().compareTo(p2.getSurName()));

);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

227

Пример: Lambda – выражение в операторе
сравнения при сортировке

List<Person> personList = Person.createShortList();

Collections.sort(personList,

 new Comparator<Person>(){

 public int compare(Person p1, Person p2){

 return p1.getName().compareTo(p2.getName());

 }

 }

);

List<Person> personList = Person.createShortList();

Collections.sort(personList,

 (p1, p2) -> p1.getSurName().compareTo(p2.getSurName()));

);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

228

Пример: Lambda – выражение при работе с
коллекциями

List<String> features = Arrays.asList("A", "B", "C", "D");

// Внешний итератор.

for (String feature : features)

 { System.out.println(feature); }

List<String> features = Arrays.asList("A", "B", "C", "D");

// Внутренний итератор.

features.forEach(n -> System.out.println(n));

// Ссылка на метод.

features.forEach(System.out::println);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

229

Назначение Lambda-выражений

• Лямбда – выражение SAM-тип:

 (Single Abstract Method) – интерфейс с

единственным абстрактным методом

• Другое название SAM-типа –

функциональный интерфейс

• В Java8 могут быть интерфейсы с НЕ

абстрактными методами (default – методы)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

230

Функциональный интерфейс.
Пример

package java.util.function;

@FunctionalInterface

public interface Consumer<T> {

void accept(T t);

default Consumer<T> andThen(Consumer<? super T> after) {

// ...

}

}

• @FunctionalInterface – аннотация для синтаксического

контроля: только один абстрактный метод.

• default – может быть неограниченное число умалчиваемых

методов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

231

Синтаксис Lambda-выражений

Параметры Стрелка Тело

(int x, int y) -> x + y

() -> 100

(String s) -> {

 System.out.println(s);

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

232

Синтаксис Lambda-выражений

Параметры Стрелка Тело

(x, y) -> x + y

() -> 100

s -> { System.out.println(s); }

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

233

Функциональные интерфейсы.

java.util.function

Имя интерфейса Аргумент Возвращает

Predicate<T> T Boolean

Consumer<T> T Void

Function<T,R> T R

Supplier<T> Нет T

UnaryOperator<T> T T

BinaryOperator<T> (T, T) T

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

234

Функциональный интерфейс.
Примеры из пакета java.util.function

• Consumer<T> – выполняет действия на типом T.

Результат не возвращается

• Supplier<T> – возвращает результат типа T.

Ввод не требуется

• Predicate<T> – получает экземпляр типа T как

параметр. Возвращает логическое значение

• Function<T,R> – получает экземпляр типа T как

параметр. Возвращает результат типа R

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

235

Пример: Lambda – выражение для
функционального программирования

// Функциональный интерфейс
interface CheckPerson {
 boolean test(Person p);
}

package java.util.function;

interface Predicate<T> {
 boolean test(T t);
 //…
}

// Функциональный интерфейс
interface Predicate<Person> {
 boolean test(Person p);
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

236

Пример: Lambda – выражение для
функционального программирования

// Объявление
public static
void printWithPredicate(List<Person> roster, Predicate<Person> tester) {
 for (Person p : roster) {
 if (tester.test(p)) {
 p.printPerson();
 }
 }
}

// Вызов
printWithPredicate(roster,
 p -> p.getGender() == Person.Sex.MALE &&

 p.getAge() >= 18 &&
 p.getAge() <= 25

);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

237

Умалчиваемые методы интерфейсов.
Новые методы для коллекций

interface Collection {
//…

default void forEach (Consumer<? super T> action) {

 for (T t : this)
 action.accept(t);

}

@FunctionalInterface
interface Consumer<T> {
 //…
 void accept(T t);
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

238

Умалчиваемые методы интерфейсов.
Новые методы для коллекций

List<String> features = Arrays.asList("A", "B", "C", "D");

// Внутренний итератор.
features.forEach (n -> System.out.println(n));

// Внутренний итератор со ссылкой на метод.
features.forEach (System.out::println);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Java 8. Stream - потоки

Владимир Юрьевич Романов

Московский Государственный Университет им. М.В.Ломоносова
Факультет Вычислительной Математики и Кибернетики

vromanov@cs.msu.su,
vladimir.romanov@gmail.com

http://master.cmc.msu.ru

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

240

Определение потоков

Последовательность элементов из источника которые
поддерживают составные операции

Последовательность элементов:
поток предоставляет интерфейс для упорядоченного множества
значений для заданного типа элементов.
Однако потоки не хранят значения, а вычисляют их по
требованию.

Источник:
потоки потребляют информацию из источников предоставляющих
данные: коллекций, массивов, ресурсов ввода и вывода.

Составные операции:
Потоки поддерживают операции из функциональных языков
программирования: filter, map, reduce, find, match, sorted, ...

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

241

Отличие операций потоков от операций
коллекций

Конвейер (Pipelining):
Многие операции потока возвращают сами потоки.
Это позволяет объединять операции в форме большого
конвейера.

Внутренние итерации:
В отличие от коллекций, которые проходятся явно (внешняя
итерация), в потоковых операциях итераций скрыта.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

242

Обработка данных в потоке

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

243

Интерфейс Stream.
Преобразования конвейера

public interface Stream<T> extends BaseStream<T,Stream<T>>

{

static <T> Stream<T> of(T... values);

Stream<T> filter(Predicate<? super T> predicate);

Stream<T> distinct();

Stream<T> sorted();

Stream<T> sorted(Comparator<? super T> comparator);

Stream<T> peek(Consumer<? super T> action);

<R> Stream<R> map(Function<? super T,? extends R> mapper);

IntStream mapToInt(ToIntFunction<? super T> mapper);

//…

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

244

Интерфейс Stream.
Окончание конвейера

public interface Stream<T> extends BaseStream<T,Stream<T>>

{

//…

void forEach(Consumer<? super T> action);

Object[] toArray();

Optional<T> min(Comparator<? super T> comparator)

long count();

boolean allMatch(Predicate<? super T> predicate);

boolean anyMatch(Predicate<? super T> predicate);

<R,A> R collect(Collector<? super T,A,R> collector);

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

245

Интерфейс BaseStream

interface BaseStream<T,S extends BaseStream<T,S>> {

boolean isParallel();

Iterator<T> iterator();

S parallel();

S sequential();

S unordered();

S onClose(Runnable closeHandler);

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

246

Java8. Потоки
Порождение потоков из коллекций

interface Collection {
//…

default Stream<E> stream();

//…

}

List<String> collection = Arrays.asList("A", "B", "C", "D");

// sequential version
Stream stream = collection.stream();

// parallel version
Stream parallelStream = collection.parallelStream();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

247

Java8. Потоки
Порождение потоков

Stream<Integer> numbersFromValues = Stream.of (1, 2, 3, 4);

int[] numbers = {1, 2, 3, 4};
IntStream numbersFromArray = Arrays.stream(numbers);

List<String> list = Arrays.asList("Monkey", "Lion", "Giraffe”);
Stream<String> streamFromList = list.stream();

Set<String> set = new HashSet<>(list);
Stream<String> streamFromSet = set.stream();

Stream<String> lines =

Files.lines(Paths.get("File.txt"), Charset.defaultCharset());

long numberOfLines =
 Files
 .lines(Paths.get("File.txt”), Charset.defaultCharset())
 .count();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

248

Java8. Потоки
Порождение потоков

Stream<Integer> numbers = Stream.iterate (0, n -> n + 10);
numbers
 .limit(5)
 .forEach(System.out::println); // 0, 10, 20, 30, 40

IntStream oneTwoThree = IntStream.of(1, 2, 3);

IntStream positiveSingleDigits = IntStream.rangeClosed(1, 9);

IntStream powersOfTwo = IntStream.iterate(1, i -> i * 2);

IntStream randomInts = new Random().ints();

IntStream chars = "ABC".chars();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

249

Пример: Обработка списка из строк

List<String> collection = Arrays.asList(
"alfred", "Adam", "Alex", "David", "Catrin", "Anita", "ann");

List<String> result = collection .stream()
 .filter(e -> e.startsWith("A") || e.startsWith("a"))
 .sorted(String.CASE_INSENSITIVE_ORDER)
 .peek(System.out::println)
 .sorted()
 .map(e -> "Name is: " + e)
 .collect(Collectors.toList());

System.out.println(result);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

250

Пример: Обработка списка из строк

Adam
Alex
alfred
Anita
ann
[Name is: Adam, Name is: Alex, Name is: Anita, Name is: alfred, Name is: ann]

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

251

Пример: редукция

int sum = Stream.of(1, 2, 3)

 .reduce (0, (acc, element) -> acc + element);

T reduce(T identity, BinaryOperator<T> accumulator);

Optional<T> reduce(BinaryOperator<T> accumulator)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

252

Пример: Сборка

List<String> collected = Stream.of("a", "b", "c")

.collect(Collectors.toList());

<R,A> R collect(Collector<? super T,A,R> collector);

interface Collector <T,A,R>

T – Тип входных параметров для операции редукции.

A – Тип для аккумуляции операции редукции

R – Результирующий тип операции редукции

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

253

Пример: Подсчет количества фигур противника
атакующих заданную фигуру

public long enemyAttacks(Piece piece) {
Board board = piece.square.getBoard();

PieceColor myColor = piece.getColor();
PieceColor enemyColor = Board.getOponentColor(myColor);

List<Square> squares= board.getSquares();
long n = squares

.stream()

.filter(s -> !s.isEmpty())

.map(s -> s.getPiece())

.filter(p -> p.getColor() == enemyColor)

.filter(p -> attacksSquare(p, square))

.count();

return n;

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

254

Пример: Лямбда выражение при сравнении ходов.
Выбор ходов с наибольшим шагом

/**
 * Приоритет у хода делающего больший шаг к цели -
 * противоположному углу доски.
 */
Comparator<ITransferMove> maxStep =

(move1, move2) -> {
// Направление шага.
int dir = move1.getPiece().isWhite() ? 1 : -1;

int step1 = move1.getSource().shift(move1.getTarget());
int step2 = move2.getSource().shift(move2.getTarget());

return dir * (step2 - step1);

};

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

255

Пример: Лямбда выражение при сравнении ходов.
Выбор ходов с удаленной от цели клетки

/**
 * Приоритет у хода с более дальней от цели клетки
 * (ход отстающими фигурами).
 */
Comparator<ITransferMove> fromBack =

(move1, move2) -> {
Square goal = Halma.getPieceGoal(move1.getPiece());

// Расстояние до клетки - цели.
int distance1 = goal.distance(move1.getSource());
int distance2 = goal.distance(move2.getSource());

return Math.abs(distance2) - Math.abs(distance1);

};

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

256

Пример: Использование умалчиваемых методов
интерфейса Comparator

protected Comparator <ITransferMove> getComparator() {
return maxStep.thenComparing(fromBack);

}

Использование
умалчиваемого метода
thenComparing для

задания порядка
сравнения

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

257

Пример: Лямбда выражение при сравнении ходов.
Приоритет у хода с большим весом

/**
 * Приоритет у хода с большим весом
 */
final Comparator<? super Move> brain =

(m1, m2) -> getMoveWeight (m2) – getMoveWeight (m1);
};

private int getMoveWeight (Move move) {
IPutMove putMove = (IPutMove) move;

Square target = putMove.getTarget();

if (isCorner(target))

return 1000; // Встали в угол.

if (isBorder(target))

return 900; // Встали на край доски.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

List<Move> correctMoves = getCorrectMoves(board, color);

// Случайным образом переставим ходы
// чтобы игра не повторялась.
Collections.shuffle(correctMoves);

// Ищем лучший ход
correctMoves.sort(brain);

// Выбираем лучший ход
Move bestMove = correctMoves.get(0);

258

Пример: Применение сортировки для

выбора лучшего хода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Аннотации
в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

260

Аннотации

• Аннотации предоставляют информацию о программе
и хранится с исполняемым кодом программы

• Не влияют на выполнение программы

• Виды аннотации

 Информация для компилятора - может использоваться для
обнаружения ошибок и подавления предупреждений

 Для обработки во время компиляции и сопровождения –
например для генерации XML-файлов

 Для обработки во время выполнения программы

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

261

Объявление типа аннотации -

информация об авторе

import java.lang.annotation.*; // импорт @Documented

/**
 * Аннотация об авторе будет хранится
 * в оттранслированном классе (байткоде).
 */
@Documented
@interface Doc {
 String author = "";
 int version = 1;
}

Объявление

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

262

Базовый интерфейс Annotation

и его потомки

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Doc (
 author = "John Doe",
 version = 2
)
public class DocumentedClass {

// …
}

263

Использование аннотации -

информации об авторе

Использование
аннтоации

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

264

Аннотация @Doc

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Documented
@Retention(value=RUNTIME)
@Target(value=ANNOTATION_TYPE)
public @interface Documented {
}

265

Объявление аннотации Documented

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Retention
Как хранится аннотация

RetentionPolicy.SOURCE
RetentionPolicy.CLASS
RetentionPolicy.RUNTIME

266

Аннотация Retention

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Documented
Будет ли использоваться инструментом
JavaDoc

267

Аннотация @Documented

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Target
К какому элементу программы на Java может
применяться

ElementType.ANNOTATION_TYPE
ElementType.CONSTRUCTOR
ElementType.FIELD
ElementType.LOCAL_VARIABLE
ElementType.METHOD
ElementType.PACKAGE
ElementType.PARAMETER
ElementType.TYPE

268

Аннотация @Target

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Inherited
Может ли аннотация унаследована от
суперкласса

269

Аннотация @Inherited

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@ Repeatable
Может ли аннотация применяться многократно

270

Аннотация @Repeatable

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

@Documented
@Retention(value=RUNTIME)
@Target(value=ANNOTATION_TYPE) public
@interface Documented {
}

271

Объявление аннотации Documented

Использование
аннтоации

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

class User {
public void main(String[] args) {

OldClass.deprecatedMethod();
}

}

272

Аннотации для компилятора.

Устаревшие методы

public class OldClass {
 /**
 * @deprecated
 * Этот метод был написан 20 лет назад
 */
 @Deprecated
 static void deprecatedMethod() { }
}

Предупреждение
О старом методе

Устаревший
метод

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

class User {
@SuppressWarnings("deprecation")
public void main(String[] args) {

OldClass.deprecatedMethod();
}

}

273

Аннотации для компилятора.

Подавление лишней диагностики

Подавление
диагностики-

предупреждения

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

274

Аннотации для компилятора.

Перекрытие метода

@Override

int overriddenMethod() {

}

Метод
перекрывает

метод
суперкласса

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

275

Аннотации для компилятора.

Проверка указателей на null

@NonNull String str;

Переменной str
нельзя

присваивать
значение null

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Программирование ввода-вывода
в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

277

Потоки ввода/вывода языка Java.
Классы и интерфейсы потоков ввода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

278

Потоки ввода/вывода языка Java.
Классы и интерфейсы потоков вывода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

279

Потоки ввода/вывода языка Java.
Класс InputStream.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

280

Потоки ввода/вывода языка Java.
Класс InputStream. Абстрактный метод read.

• Метод read() – должен быть переопределен в классах-
потомках

• Считывает 1 байт

• Возвращает байт как целое число

• Если ввод закончен, то возвращает -1

• Если при вводе ошибка, то порождает ситуацию IOException

• IOException – потомок класса Exception

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

281

Потоки ввода/вывода языка Java.
Класс InputStream. Методы чтения.

• Реализуются с помощью абстрактного метода read()

• int read(byte[] b)

 Чтение нескольких байтов в буферный массив b.

• int read(byte[] b, int off, int len)

 Чтение нескольких байтов в буферный массив начиная с

позиции в массиве off.

• skip(long n)

 Пропустить n байтов из потока ввода.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

282

Потоки ввода/вывода языка Java.
Класс InputStream. Маркировка потока ввода

• boolean markSupported()

Это свойство экземпляра класса. Поддерживает ли этот

экземпляр класса методы mark и reset.

• mark(int readlimit)

Помечает текущую позицию потока ввода.

• void reset()

Возвращает позицию ввода в позицию заданную методом

mark.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

283

Потоки ввода/вывода языка Java.
Класс InputStream. Другие методы

• int available()

Возвращает количество байтов которое может быть считано

или пропущено.

• void close()

Закрывает поток ввода и освобождает связанные ресурсы.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

284

Потоки ввода/вывода языка Java.
Класс ByteArrayInputStream. Назначение и методы

• Является потомком класса InputStream

• Используется для чтения из байтового массива.

• ByteArrayInputStream(byte[] buf)

ByteArrayInputStream(byte[] buf, int offset, int length)

Конструкторы байтового потока

• protected byte[] buf

Массив байтов предоставленных при создании потока.

• protected int count

Номер следующего за допустимым символа.

• protected int mark

Помеченная позиция.

• protected int pos

Индекс следующего для чтения символа.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

285

Потоки ввода/вывода языка Java.
Класс ByteArrayInputStream. Пример

byte[] bytes = {1, -1, 0};

ByteArrayInputStream in = new ByteArrayInputStream(bytes);

int readedInt = in.read(); // readedInt = 1

System.out.println("first element read is: " + readedInt);

readedInt = in.read();

// readedInt = 255.

// Однако (byte)readedInt даст значение -1

System.out.println("second element read is: " + readedInt);

readedInt = in.read(); // readedInt = 0

System.out.println("third element read is: " + readedInt);

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

286

Потоки ввода/вывода языка Java.
Класс StringInputStream. Назначение и методы

• Является потомком класса InputStream

• Используется для чтения из строки.

• StringInputStream(String s)

Конструкторы строкового потока

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

287

Потоки ввода/вывода языка Java.
Класс SequenceInputStream. Назначение и методы

• Является потомком класса InputStream

• Используется для чтения из нескольких потоков.

• SequenceInputStream(Enumeration e)

SequenceInputStream(InputStream s1, InputStream s2)

Конструкторы последовательности потоков

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

288

Потоки ввода/вывода языка Java.
Класс SequenceInputStream. Пример

FileInputStream inFile1 = null;

FileInputStream inFile2 = null;

SequenceInputStream sequenceStream = null;

try {

 inFile1 = new FileInputStream("file1.txt");

 inFile2 = new FileInputStream("file2.txt");

 sequenceStream = new

 SequenceInputStream(inFile1, inFile2);

 int readedByte = sequenceStream.read();

 while(readedByte!=-1){

 readedByte = sequenceStream.read();

 }

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

289

Потоки ввода/вывода языка Java.
Класс SequenceInputStream. Пример

}

catch (IOException e) {

 System.out.println("IOException: " +

 e.toString());

}

finally {

 try{ sequenceStream.close(); }

 catch(IOException e){};

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

290

Потоки ввода/вывода языка Java.
Класс FileInputStream. Назначение и методы

• Является потомком класса InputStream

• Используется для чтения из файла.

• FileInputStream(String fileName) throws FileNotFoundException

Конструкторы файлового потока.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

291

Потоки ввода/вывода языка Java.
Класс FileInputStream. Пример

byte[] bytesReaded = new byte[10];

String fileName = "d:\\test.txt";

try {

 FileInputStream inFile = new FileInputStream(fileName);

 System.out.println("Файл открыт для чтения");

 // Узнать, сколько байт готово к считыванию

 int bytesAvailable = inFile.available();

 System.out.println("Готово к считыванию: " + bytesAvailable +

 " байт");

 // Считать в массив

 int count = inFile.read(bytesReaded, 0, bytesAvailable);

 System.out.println("Считано: " + count + " байт");

 for (I = 0; I < count; i++)

 System.out.print(bytesReaded[i]+",");

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

292

Потоки ввода/вывода языка Java.
Класс FileInputStream. Завершение примера

 System.out.println();

 inFile.close();

 System.out.println("Входной поток закрыт");

}

catch (FileNotFoundException e) {

 System.out.println("Невозможно произвести запись в файл: " +

 fileName);

}

catch (IOException e) {

 System.out.println("Ошибка ввода/вывода: " + e.toString());

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

293

Потоки ввода/вывода языка Java.
Класс FilterInputStream. Назначение и методы

• Является потомком класса InputStream

• Используется как класс-адаптер для чтения из файла.

• protected FilterInputStream(InputStream is)

Конструкторы фильтрованного потока.

• Предок для классов:

 BufferedInputStream

 LineNumberInputStream

 PushBackInputStream

 DataInputStream

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

294

Потоки ввода/вывода языка Java.
Класс BufferedInputStream. Назначение и методы

• Является потомком класса FilterInputStream

• Используется для буферизации данных перед их чтением из

надстраиваемого потока данных.

• BufferedInputStream(InputStream in)

BufferedInputStream(InputStream in, int size)

Конструкторы буферизованного потока.

• Реализуют маркировку потока ввода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

295

Потоки ввода/вывода языка Java.
Класс BufferedInputStream. Пример

// Определить время считывания без буферизации

timeStart = System.currentTimeMillis();

inStream = new FileInputStream(fileName);

while(inStream.read()!=-1){}

time = System.currentTimeMillis() - timeStart;

inStream.close();

System.out.println("Direct read time: " + (time) + “ms");

// Определить время считывания c буферизацией

timeStart = System.currentTimeMillis();

inStream = new FileInputStream(fileName);

inStream = new BufferedInputStream(inStream);

while(inStream.read()!=-1){}

time = System.currentTimeMillis() - timeStart;

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

296

Потоки ввода/вывода языка Java.
Класс BufferedInputStream. Продолжение примера

 inStream.close();

 System.out.println("Buffered read time: " + (time) + “ms");

}

catch (IOException e) {

 System.out.println("IOException: " + e.toString());

 e.printStackTrace();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

297

Потоки ввода/вывода языка Java.
Класс LineNumberInputStream. Назначение и методы

• Является потомком класса FilterInputStream

• При чтении подсчитывает количество считанных строк.

• LineNumberStream(InputStream in)

Конструктор потока.

• int getLineNumber()

Возвращает количество считанных строк.

• void setLineNumber(int lineNumber)

Выполняет переход на указанную строку

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

298

Потоки ввода/вывода языка Java.
Класс PushBackInputStream. Назначение и методы

• Является потомком класса FilterInputStream

• Позволяет вернуть один символ в поток ввода с помощью

функции unread().

• Является буферизованным потоком ввода

• PushbackInputStream(InputStream in)

PushbackInputStream(InputStream in, int size)

Конструкторы потока ввода

• void unread(byte[] b)

void unread(byte[] b, int off, int len)

void unread(int b)

Функции записи в поток ввода.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

299

Потоки ввода/вывода языка Java.
Класс DataInputStream. UML диаграмма

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

300

Потоки ввода/вывода языка Java.
Класс DataInputStream. Назначение и методы

• Является потомком класса FilterInputStream

• Используется для чтения не только байтов, но и

примитивных типов данных языка Java

• Реализует интерфейс DataInput

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

301

Потоки ввода/вывода языка Java.
Интерфейс DataInput. Методы

• boolean readBoolean()

• byte readByte()

• char readChar()

• double readDouble()

• float readFloat()

• void readFully(byte[] b)

• void readFully(byte[] b, int off, int len)

• int readInt()

• String readLine()

• long readLong()

• Short readShort()

• int readUnsignedByte()

• int readUnsignedShort()

• String readUTF()

• int skipBytes(int n)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

302

Потоки ввода/вывода языка Java.
Класс DataInputStream. Пример

try {

 InputStream in = new FileInputStream(“c:/test.txt”);

 DataInputStream inData = new DataInputStream(in);

 System.out.println("readByte: " + inData.readByte());

 System.out.println("readInt: " + inData.readInt());

 System.out.println("readLong: " + inData.readLong());

 System.out.println("readDouble: " + inData.readDouble());

 inData.close();

}

catch (Exception e) {

 System.out.println("Impossible IOException occurs: " +

 e.toString());

 e.printStackTrace();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

303

Потоки ввода/вывода языка Java.
Класс – читатели. UML диаграмма

• Работают не с массивом байтов byte, а с массивом символов char

• Используются для чтения символов в кодировке UNICODE

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

304

Потоки ввода/вывода языка Java.
Таблица соответствия потоков ввода и читателей (1)

• Байтовый поток Символьный поток

• InputStream Reader

• ByteArrayInputStream CharArrayReader

• --- InputStreamReader

• FileInputStream FileReader

• FilterInputStream FilterReader

• BufferedInputStream BufferedReader

• DataInputStream ---

• ObjectInputStream ---

• PipedInputStream PipedReader

• StringBufferInputStream StringReader

• LineNumberInputStream LineNumberReader

• PushBackInputStream PushBackReader

• SequenceInputStream ---

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

305

Потоки ввода/вывода языка Java.
Класс-читатели. Пример

try {

 // Считываем результат

 FileReader fr = new FileReader(fileName);

 BufferedReader br = new BufferedReader(fr);

 String s = null;

 int count = 0;

 System.out.println("Read data from file: " + fileName);

// Считывать данные, отображая на экран

 while((s = br.readLine()) != null)

 System.out.println("row " + (++count) + " read:" + s);

 br.close();

}

catch(Exception e) { e.printStackTrace(); }

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

306

Потоки ввода/вывода языка Java.
Классы и интерфейсы потоков вывода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

307

Потоки ввода/вывода языка Java.
Класс OutputStream. Абстрактный метод write.

• Метод write(int byte) – должен быть переопределен в
классах-потомках

• Записывает 1 байт в поток вывода, остальные 24 разряда
целого числа игнорирует

• Если при выводе ошибка, то порождает ситуацию
IOException

• IOException – потомок класса Exception

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

308

Потоки ввода/вывода языка Java.
Класс OuputStream. Методы записи.

• Реализуются с помощью абстрактного метода write()

• void write(byte[] b)

Запись нескольких байтов из буферного массива b.

• void write(byte[] b, int off, int len)

Запись нескольких байтов из буферного массива начиная с

позиции в массиве off.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

309

Потоки ввода/вывода языка Java.
Класс OutputStream. Другие методы класса

• flash()

Стирает поток вывода и при буферизованном выводе и

записывает информацию из буфера.

• void close()

Закрывает поток вывода и освобождает связанные ресурсы.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

310

Потоки ввода/вывода языка Java.
Класс ByteArrayOutputStream. Назначение и методы

• Является потомком класса OutputStream

• Используется для записи в байтовый массив.

• ByteArrayOutputStream()

ByteArrayOutputStream(int bufferSize)

Конструкторы байтового потока

• protected byte[] buf

Массив байтов для хранения данных потока

предоставленных при создании потока.

• protected int count

Номер следующего за допустимым символа.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

311

Потоки ввода/вывода языка Java.
Класс ByteArrayOutputStream. Конвертирование

данных потока

• byte[] toByteArray()

Создает новый массив и возвращает его как результат

метода

• String toString()

Конвертирует содержимое буфера в строку, транслируя

байты в символы в соответствии с умалчиваемой для

платформы кодировкой символов

• String toString(String enc)

Конвертирует содержимое буфера в строку, транслируя

байты в символы в соответствии с заданной параметром enc

кодировкой символов

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

312

Потоки ввода/вывода языка Java.
Класс ByteArrayOutputStream. Методы

• close()

Действие по закрытию потока в унаследованном этим

классом методе эффекта не имеет.

• void reset()

Обнуляет счетчик байтов и уничтожает накопленные

выводимые в поток данные.

• int size()

Возвращает текущий размер буфера.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

313

Потоки ввода/вывода языка Java.
Класс ByteInputStream. Пример

ByteArrayOutputStream out = new ByteArrayOutputStream();

out.write(10);

out.write(11);

byte[] bytes = out.toByteArray();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

314

Потоки ввода/вывода языка Java.
Класс FileOutputStream. Назначение и методы

• Является потомком класса OutputStream

• Используется для записи в файл.

• FileOutputStream(String fileName) throws

FileNotFoundException

 FileOutputStream(String name, boolean append)

FileNotFoundException

Конструктор файлового потока вывода.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

315

Потоки ввода/вывода языка Java.
Класс FileOutputStream. Пример

byte[] bytesToWrite = {1, 2, 3};

String fileName = "d:\\test.txt";

try {

 // Создать выходной поток

 FileOutputStream outFile = new

 FileOutputStream(fileName);

 System.out.println("Файл открыт для записи");

 // Записать массив

 outFile.write(bytesToWrite);

 System.out.println("Записано: " + bytesToWrite.length

 + " байт");

 // По окончании использования поток должен быть закрыт

 outFile.close();

 System.out.println("Выходной поток закрыт");

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

316

Потоки ввода/вывода языка Java.
Класс FileOutputStream. Завершение примера

}

catch (FileNotFoundException e) {

 System.out.println("Невозможно произвести чтение из” +

 “ файла: “ + fileName);

 }

catch (IOException e) {

 System.out.println("Ошибка ввода/вывода: " +

 e.toString());

 }

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

317

Потоки ввода/вывода языка Java.
Класс FileOutputStream. Назначение и методы

• Является потомком класса OutputStream

• Используется для записи в файл.

• FileOutputStream(String fileName) throws

FileNotFoundException

 FileOutputStream(String name, boolean append)

FileNotFoundException

Конструктор файлового потока вывода.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

318

Потоки ввода/вывода языка Java.
Классы PipedInputStream и PipedOutputStream

Назначение и методы

• Используются в программе только в паре. Рекомендуется

использовать ввод и вывод в отдельных потоках управления

(threads)

• PipedInputStream является потомком класса InputStream

PipedOutputStream является потомком класса OutputStream

• PipedInputStream()

PipedOutputStream()

Создают еще не подсоединенные потоки ввода и вывода.

• PipedInputStream(PipedOutputStream src)

PipedOutputStream(PipedInputStream snk)

Создают пару соединенных потоков

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

319

Потоки ввода/вывода языка Java.
Класс PipedInputStream. Методы

• Int available()

Возвращает количество байтов которое можно скачать из

потока ввода без блокировки.

• void close()

Закрывает поток ввода и освобождает связанные с ним

ресурсы.

• void connect(PipedOutputStream src)

Присоединяет поток ввода к потоку вывода src.

• int read()

Читает следующий байт из потока ввода.

• int read(byte[] b, int off, int len)

Читает len байтов из потока ввода в массив байтов.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

320

Потоки ввода/вывода языка Java.
Класс PipedOutputStream. Методы

• void close()

Закрывает поток вывода и освобождает связанные с ним

ресурсы.

• void connect(PipedInputStream snk)

Присоединяет поток вывода к получателю.

• void flush()

Стирает поток вывода и выводи накопленные в буфере

данные.

• void write(byte[] b, int off, int len)

Пишет len байтов из описанного байтового массива в поток

вывода.

• void write(int b)

Пишет байт в поток вывода

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

321

Потоки ввода/вывода языка Java.
Классы PipedInputStream и PipedOutputStream.

Пример

try {

 int countRead = 0;

 byte[] toRead = new byte[100];

 PipedInputStream pipeIn = new PipedInputStream();

 PipedOutputStream pipeOut = new PipedOutputStream(pipeIn);

 // Считывать в массив, пока он полностью не будет заполнен

 while(countRead<toRead.length) {

 // Записать в поток некоторое количество байт

 for(int i=0; i<(Math.random()*10); i++)

 pipeOut.write((byte)(Math.random()*127));

 // Считать из потока доступные данные,

 // добавить их к уже считанным.

 int willRead = pipeIn.available();

 if(willRead+countRead>toRead.length)

 // Нужно считать только до предела массива

 willRead = toRead.length-countRead;

 countRead += pipeIn.read(toRead, countRead, willRead);

 }

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

322
Потоки ввода/вывода языка Java.
Классы PipedInputStream и

PipedOutputStream. Продолжение примера

} catch (IOException e) {

 System.out.println ("Impossible IOException occur: ");

 e.printStackTrace();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

323

Потоки ввода/вывода языка Java.
Класс FilterOutputStream. Назначение и методы

• Является потомком класса OutputStream

• Используется как класс-адаптер для записи в файл.

• protected FilterOutputStream(OutputStream os)

Конструкторы фильтрованного потока вывода.

• Предок для классов:

 BufferedOutputStream

 DataOutputStream

 PrintStream

 DeflaterOutputStream

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

324

Потоки ввода/вывода языка Java.
Класс BufferedOutputStream. Назначение и методы

• Является потомком класса FilterOutputStream

• Используется для буферизации данных перед их записью в

надстраиваемый поток данных.

• BufferedOutputtream(OutputStream in)

BufferedOutputStream(OutputStream in, int size)

Конструкторы буферизованного потока вывода.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

325

Потоки ввода/вывода языка Java.
Класс BufferedOutputStream. Пример

try {

 String fileName = "d:\\file1";

 InputStream inStream = null;

 OutputStream outStream = null;

 //Записать в файл некоторое количество байт

 long timeStart = System.currentTimeMillis();

 outStream = new FileOutputStream(fileName);

 outStream = new BufferedOutputStream(outStream);

 for(int i = 1000000; --i >= 0;)

 outStream.write(i);

 long time = System.currentTimeMillis() - timeStart;

 System.out.println("Writing time: " + time + " millisec");

 outStream.close();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

326

Потоки ввода/вывода языка Java.
Класс BufferedOutputStream. Продолжение

}

catch (IOException e) {

 System.out.println("IOException: " + e.toString());

 e.printStackTrace();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

327

Потоки ввода/вывода языка Java.
Класс DataOutputStream. UML диаграмма

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

328

Потоки ввода/вывода языка Java.
Класс DataOutputStream. Назначение и методы

• Является потомком класса FilterOutputStream

• Используется для записи не только байтов, но и

примитивных типов данных языка Java

• Реализует интерфейс DataOutput

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

329

Потоки ввода/вывода языка Java.
Интерфейс DataOutput. Методы

• void write(byte[] b)

• void write(byte[] b, int off, int len)

• void write(int b)

• void writeBoolean(boolean v)

• void writeByte(int v)

• void writeBytes(String s)

• void writeChar(int v)

• void writeChars(String s)

• void writeDouble(double v)

• void writeFloat(float v)

• void writeInt(int v)

• void writeLong(long v)

• void writeShort(int v)

• void writeUTF(String str)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

330

Потоки ввода/вывода языка Java.
Класс DataOutputStream. Пример

try {

 ByteArrayOutputStream out = new ByteArrayOutputStream();

 DataOutputStream outData = new DataOutputStream(out);

 outData.writeByte(128);

 // этот метод принимает аргумент int, но записывает

 // лишь младший байт

 outData.writeInt(128);

 outData.writeLong(128);

 outData.writeDouble(128);

 outData.close();

}

catch (Exception e) {

 System.out.println("Impossible IOException occurs: " +

 e.toString());

 e.printStackTrace();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

331

Потоки ввода/вывода языка Java.
Класс PrintStream. Назначение и методы

• Является потомком класса FilterOutputStream

• Для форматированного вывода данных в текстовый файл.

• PrintStream format(Locale l, String format, Object... args)

 PrintStream format(String format, Object... args)

Форматированный вывод в поток данных

• PrintStream printf(Locale l, String format, Object... args)

 PrintStream printf(String format, Object... args)

Форматированный вывод в поток данных

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

332

Потоки ввода/вывода языка Java.
Класс PrintStream. Назначение и методы

• void println()

• void println(boolean x)

• void println(char x)

• void println(char[] x)

• void println(double x)

• void println(float x)

• void println(int x)

• void println(long x)

• void println(Object x)

• void println(String x)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

333

Потоки ввода/вывода языка Java.
Таблица соответствия потоков вывода и писателей

• Байтовый поток Символьный поток

• OutputStream Writer

• ByteArrayOutputStream CharArrayWriter

• --- OutputStreamWriter

• FileOutputStream FileWriter

• FilterOutputStream FilterWriter

• BufferedOutputStream BufferedWriter

• PrintStream PrintWriter

• DataOutputStream ---

• ObjectOutputStream ---

• PipedOutputStream PipedWriter

• --- StringWriter

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

334

Потоки ввода/вывода языка Java.
Класс FileWriter. Пример

String fileName = "d:\\file.txt";

//Строка, которая будет записана в файл

String data = "Some data to be written and read.\n";

try{

 FileWriter fw = new FileWriter(fileName);

 BufferedWriter bw = new BufferedWriter(fw);

 System.out.println("Write some data to file: " + fileName);

 // Несколько раз записать строку

 for(int i = (int)(Math.random()*10); --i >= 0;)

 bw.write(data);

 bw.close();

}

catch(Exception e) {

 e.printStackTrace();

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

335

Потоки ввода/вывода языка Java.
Класс java.util.Scaner. Назначение и методы

• Использует поток как параметр

• Используется для чтения структурированного текста.

• Позволяет распознавать примитивные типы данных и строки

• Scanner(InputStream source)

Scanner(String source)

 Конструкторы для распознавания потока ввода и строки

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

336

Потоки ввода/вывода языка Java.
Класс java.util.Scaner. Методы просмотра вперед

• boolean hasNextBoolean()

• boolean hasNextByte()

• boolean hasNextDouble()

• boolean hasNextFloat()

• boolean hasNextInt()

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

337

Потоки ввода/вывода языка Java.
Класс java.util.Scaner. Методы чтения данных

• String next()

• boolean nextBoolean()

• byte nextByte()

• double nextDouble()

• float nextFloat()

• int nextInt()

• String nextLine()

• long nextLong()

• Short nextShort()

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

338

Потоки ввода/вывода языка Java.
Класс Scanner. Пример

Scanner sc = new Scanner(new FileReader("numbers.txt"));

while (sc.hasNextLong()) {

 long aLong = sc.nextLong();

}

sc.close();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

339

Потоки ввода/вывода языка Java.
Класс BufferedOutputStream. Пример

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

340

Потоки ввода/вывода языка Java.
Класс ZipOutputStream. Пример

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

341

Потоки ввода/вывода языка Java.
Класс ZipInputStream. Пример

FileOutputStream fo;

BufferedOutputStream bo;

ZipOutputStream zo;

try {

 fo = new FileOutputStream("demo.zip");

 bo = new BufferedOutputStream(fo);

 zo = new ZipOutputStream(bo);

 ZipEntry ze = new ZipEntry("ZippedFile1.txt");

zo.putNextEntry(ze);

Создаем новый элемент

в zip-архиве.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

342

Потоки ввода/вывода языка Java.
Класс ZipOutputStream. Пример

FileOutputStream fo;

BufferedOutputStream bo;

ZipOutputStream zo;

try {

 fo = new FileOutputStream("demo.zip");

 bo = new BufferedOutputStream(fo);

 zo = new ZipOutputStream(bo);

 ZipEntry ze = new ZipEntry("ZippedFile1.txt");

 zo.putNextEntry(ze);

Создаем
новый

элемент в zip-
архиве.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

343

Потоки ввода/вывода языка Java.
Класс ZipInputStream. Пример

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Интернационализация программ
в языке Java

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

345

Интернационализация программ на
Java. Файлы текстовых ресурсов

• Файл StringResources_ru.properties

• Файл StringResources_en.properties

• Файл StringResources.properties

yes=Да

no=Нет

yes=Yes

no=No

yes=Yes

no=No

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

346

Интернационализация программ на Java.
Использование умалчиваемого файла ресурсов

ResourceBundle bundle =

 ResourceBundle.getBundle("StringResources"

);

String title = bundle.getString("yes");

Button yesButton = new Button(title);

Текст для ключа yes из
умалчиваемого файла

StringResources.properties

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

347

Интернационализация программ на Java.
Использование файла ресурсов

Locale locale= new Locale("ru");

ResourceBundle bundle =

ResourceBundle.getBundle("StringResources, locale);

String title = bundle.getString("yes");

Button yesButton = new Button(title);

Текст для ключа yes из файла
StringResources_ru.properties

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Java 9

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

349

Загрузка JDK9

http://www.oracle.com/technetwork
/java/javase/downloads
/jdk9-downloads-3848520.html

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

350

Установка Eclipse

http://www.eclipse.org/downloads
/packages/release

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

351

Создание проекта в Eclipse

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

352

Совместимость кода в Eclipse

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Модули в Java 9

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

354

Java 9. Назначение модулей (1)

• Если набор пакетов достаточно согласован,
пакеты могут быть сгруппированы в модуль.

• Модуль классифицирует некоторые или все
его пакеты как экспортированные, что
означает, что их типы могут быть доступны
из кода вне модуля.

• Если пакет НЕ экспортируется модулем,
тогда только код внутри модуля может
обращаться к его типам.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

355

Java 9. Назначение модулей (2)

• Кроме того, если код в модуле хочет получить

доступ к пакетам, экспортированным другим
модулем, то первый модуль должен ЯВНО зависеть
от второго модуля.

• Таким образом модуль:
 контролирует, как его пакеты используют
другие модули (определяя зависимости)

 контролирует как другие модули используют
его пакеты (указывая экспорт этих пакетов)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

356

Создание файла - модуля

Меню проекта Java:

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

357

Создание файла - модуля

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

358

Создание файла - модуля

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

359

Java 9. Синтаксис описания модулей

ModuleDeclaration =
{ Annotation }
["open"]
"module" Identifier { .Identifier }
"{"
 { ModuleDirective }
"}”

До Java 9 через механизм Reflection были доступны и
приватные методы класса.

Теперь доступ к коду в время выполнения только для
открытых (open) модулей

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

360

Java 9. Синтаксис описания модулей
Файл module-info.java

ModuleDirective =

 "requires" { RequiresModifier } ModuleName ";“

 "exports" PackageName

["to" ModuleName {"," ModuleName}] ";“

 "opens" PackageName

["to" ModuleName {"," ModuleName}] ";“

 "uses" TypeName ";“

 "provides" TypeName

"with" TypeName {"," TypeName} ";"

RequiresModifier =

 "transitive" | "static"

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

361

Java 9. Пример модулей.
Открытый модуль

open
module com.example.foo {

requires com.example.foo.http;
requires java.logging;
requires transitive com.example.foo.network;

exports com.example.foo.bar;
exports com.example.foo.internal

 to com.example.foo.probe;

uses com.example.foo.spi.Intf;

provides com.example.foo.spi.Intf

 with com.example.foo.Impl;
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

362

Java 9. Пример модулей.
Открытый модуль

open
module com.example.foo {

}

модуль открыт во время
выполнения для всех

модулей

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

363

Java 9. Пример модулей.
Открытость модуля

module com.example.foо {
requires com.example.foo.http;
requires java.logging;
requires transitive com.example.foo.network;

exports com.example.foo.bar;
exports com.example.foo.internal

 to com.example.foo.probe;

opens com.example.foo.quux;
opens com.example.foo.internal

 to com.example.foo.network, com.example.foo.probe;
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

364

Java 9. Пример модулей.
Открытость модуля

module com.example.foо {

opens com.example.foo.quux;

opens com.example.foo.internal

 to com.example.foo.network, com.example.foo.probe;

}

 модуль открывает пакет во
время выполнения для

всех модулей

 модуль открывает пакет во
время выполнения для

определенных модулей

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

365

Java 9. Пример модулей.
Транзитивность требования

open
module com.example.foo {

// …
requires transitive com.example.foo.network;

// …

}

• Любой модуль, который требует модуль

com.example.foo, должен явно требовать
и модуль com.example.foo.network

• ключевое слово static после слова requires
означает обязательность зависимости во время
компиляции, и возможность во время выполнения

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

366

Java 9. Пример модулей
Экспорт и открытие

module com.example.foo {
// …
exports com.example.foo.bar;
exports com.example.foo.internal

 to com.example.foo.probe;

opens com.example.foo.quux;
opens com.example.foo.internal

 to com.example.foo.network,
 com.example.foo.probe;

// …
}

• Для других модулей код пакета доступен

• exports – во время компиляции и выполнения
• opens – только во время выполнения

• to в конкретных модулях (друзьях модуля)

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 9

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

368

Java 9. Приватные методы интерфейса

public interface PrivateInterfaceMethods {
private int getName() {

return 1;
}

private static void displayCardDetails() {
}

}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

369

Java 9. Методы-фабрики

List<?> immutableList = List.of();

List<String> immutableList2

= List.of("one", "two", "three");

Map<?, ?> emptyImmutableMap = Map.of();

Map<Integer, String> nonemptyImmutableMap

= Map.of(1, "one",
 2, "two",
 3, "three");

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 10

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

371

Java 10. Новый тип переменных var

static public void main(String[] args) {
var s = "Java";

name = 3; // Ошибка

var stringList = List.of("1", "2", "3");

var mixList = List.of(2, 3.0);

}

// В лямбда выражениях

(var firstName, var lastName) -> firstName + lastName

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 11

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

373

Java 11. Новые методы типа String

Path path = Files.writeString(
 Files.createTempFile("helloworld", ".txt"),
 "Hi, my name is!");

String s = Files.readString(path);

Stream<String> lines = "Jav\na".lines();

"Java ".strip();

"Java".isBlank();

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 12

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

375

Java 12. Предложение switch.
Старый

switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 numLetters = 6;
 break;
 case TUESDAY:
 numLetters = 7;
 break;
 case THURSDAY:
 case SATURDAY:
 numLetters = 8;
 break;
 case WEDNESDAY:
 numLetters = 9;
 break;
 default:
 throw new IllegalStateException("Huh? " + day);
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

376

Java 12. Предложение switch.
Новый

int numLetters = switch (day) {

case MONDAY, FRIDAY, SUNDAY -> 6;

case TUESDAY -> 7;

case THURSDAY, SATURDAY -> 8;

case WEDNESDAY -> 9;

default -> throw new IllegalStateException("Huh? " + day);

};

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 13

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

378

Java 13. Блоки текста

String html =
 """
 <html>

 <body>
 <p>Hello, world</p>
 </body>

 </html>
 """;

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 14

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

380

Java 14. Records
Было

final class Point
{
 public final int x;
 public final int y;

 public Point(int x, int y) {
 this.x = x; this.y = y;
 }
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

381

Java 14. Records (записи)
Стало

record Point(int x, int y) { }

• Создается private final поле для его компонентов x, y
• public метод доступа для чтения для компонента с тем же

именем и типом компонента методы Point::x() и Point::y().
• public конструктор, сигнатура которого получена из списка

компонентов записи.
• Конструктор инициализирует каждое private поле с помощью

соответствующего аргумента.
• Реализации методов equals() и hashCode (), которые

указывают, что две записи равны, если они одного типа и их
соответствующие компоненты записи равны

• Реализация метода toString(), который включает строковое
представление всех компонентов записи с их именами.

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

382

Java 14. Преобразование типов
после instanceof

if (obj instanceof String) {
 String s = (String) obj;

 System.out.println(s.contains("hello"));
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

383

Java 14. Преобразование типов
после instanceof

if (obj instanceof String s) {
 System.out.println(s.contains("hello"));
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 15

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

385

Java 15. Изолированные классы и
интерфейсы

package geometry;

public sealed class Shape
 permits Circle, Rectangle, Square {...}

• sealed (изолированный, запечатанный) класс или интерфейс
можно наследовать или реализовывать только тем классам и
интерфейсам, которым это разрешили (permits).

• Классы, описанные в permits должны находиться рядом с
суперклассами:

 В том же модуле (если суперкласс находится в
именованном модуле), или
 в том же пакете (если суперкласс не находится в
именованном модуле).

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

386

Java 15. Изолированные классы и
интерфейсы

package geometry;

public final class Circle extends Shape {
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

387

Java 15. Изолированные классы и
интерфейсы

package geometry;

public non-sealed class Square extends Shape {
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

388

Java 15. Изолированные классы и
интерфейсы

package geometry;

public sealed class Rectangle extends Shape
 permits RoundRectangle
{
}

package geometry;

public final class RoundRectangle extends Rectangle {
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

Изменения в языке Java 16

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

390

Java 16. Pattern Matching for switch Expressions and
Statements
Было

public static double getPerimeter(Shape shape)
 throws IllegalArgumentException
{
 if (shape instanceof Rectangle r) {
 return 2 * r.length() + 2 * r.width();
 }
 else
 if (shape instanceof Circle c) {
 return 2 * c.radius() * Math.PI;
 }
 else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
}

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК.

391

Java 16. Pattern Matching for switch Expressions and
Statements
Стало

 public static double getPerimeter(Shape shape)
 throws IllegalArgumentException
{
 return
 switch (shape) {
 case null -> System.out.println("null!");
 case Rectangle r -> 2 * r.length() + 2 * r.width();
 case Circle c -> 2 * c.radius() * Math.PI;
 default ->
 throw new IllegalArgumentException("Unrecognized shape");
 };
}

