Языки моделирования SysML и UML

Владимир Юрьевич Романов,
Московский Государственный Университет им. М.В.Ломоносова
Факультет Вычислительной Математики и Кибернетики
vromanov@cs.msu.su,
romanov.rvy@yandex.ru
http://master.cmc.msu.ru

UML – Unified Modeling Language. Унифицированный язык моделирования

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

• Стандарт на <u>язык моделирования</u> разработанный консорциумом фирм Object Management Group:

http://www.omg.org

• Стандартизация языка UML консорциумом OMG:

http://www.omg.org/uml

http://www.uml.org/

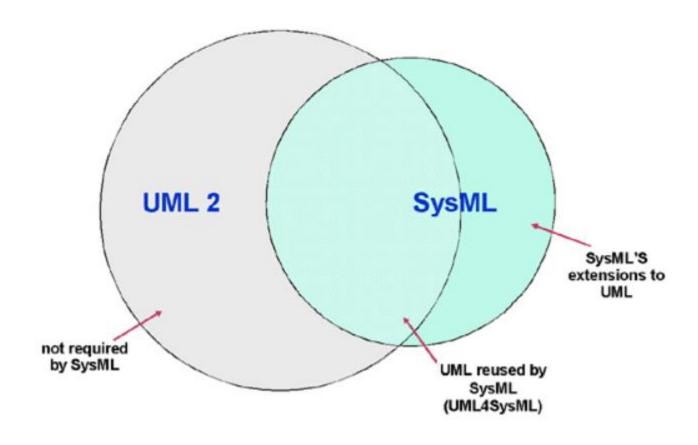
 Текущие версии стандарта доступные для свободного скачивания:

http://www.omg.org/spec/

SysML – System Modeling Language

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Язык графического моделирования, разработанный в ответ на RFP **UML** для системной инженерии, разработанный **OMG** и **INCOSE** (International Council on Systems Engineering)
 - https://www.incose.org/
 - http://www.omg.org/uml
- Поддерживает спецификацию, анализ, проектирование, и проверку систем, включающих оборудование, программное обеспечение, данные, персонал, процедуры и оборудование
- Является языком визуального моделирования, обеспечивающим
 - Семантику: значение, связанное с метамоделью (правила создания и структуры моделей)
 - Нотацию: представление значения, графическое или текстовое
- SysML не зависит от методологии и инструмента моделирования


SysML – System Modeling Language

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Профиль UML, представляющий подмножество
 UML 2 с расширениями
- Поддерживает обмен моделями и данными через XML Metadata Interchange (XMI®)

Связь между SysML и UML

МГУ им. М.В.Ломоносова. Факультет ВМК.



SysML - расширения языка UML (SysML profile)

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Блоки
- Потоки элементов
- Свойства значения
- Распределения
- Требования
- Параметризация
- Непрерывные потоки
- ...

SysML диаграммы

Фреймы диаграмм SysML

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Каждая диаграмма SysML представляет собой элемент модели
- Каждая диаграмма SysML должна иметь фрейм диаграммы
- Контекст диаграммы указан в заголовке:
 - Вид диаграммы (act, bdd, ibd, sd и т.д.)
 - Тип элемента модели (пакет, блок, деятельность и т.д.)
 - Имя элемента модели
 - Определяемое пользователем имя диаграммы или имя вида
- Отдельный блок описания диаграммы используется, чтобы указать, является ли диаграмма полной или в ней пропущены элементы.

Фреймы диаграмм SysML

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

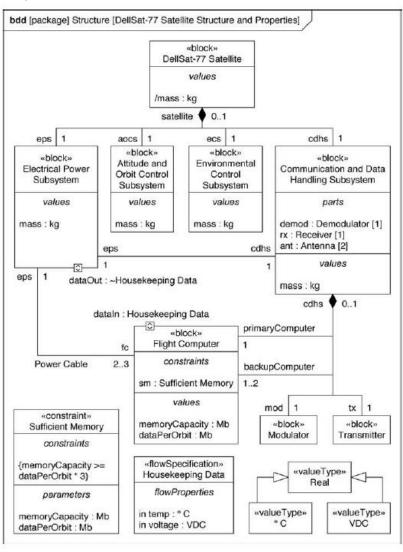
«использование диаграммы» вид диаграммы[типЭлементаМодели] имяЭлементаМодели [имяДиаграммы]

bdd [package] Structure [DellSat-77 Satellite Structure and Properties]

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

Диаграмма определения блоков


Диаграмма определения блоков (Block definition diagram)

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Блок это базовая единица структуры SysML
- Блок может использоваться для моделирования объекта любого типа в вашей системе или во внешней среде вашей системы
- Диаграмма используется для отображения таких элементов модели, как блоки и типы значений (элементы, определяющие типы частей системы)
- Диаграмма отображает отношения между этими элементами модели системы
- Обычно диаграммы используются для отображения деревьев иерархии элементов в системе и деревьев классификации элементов системы

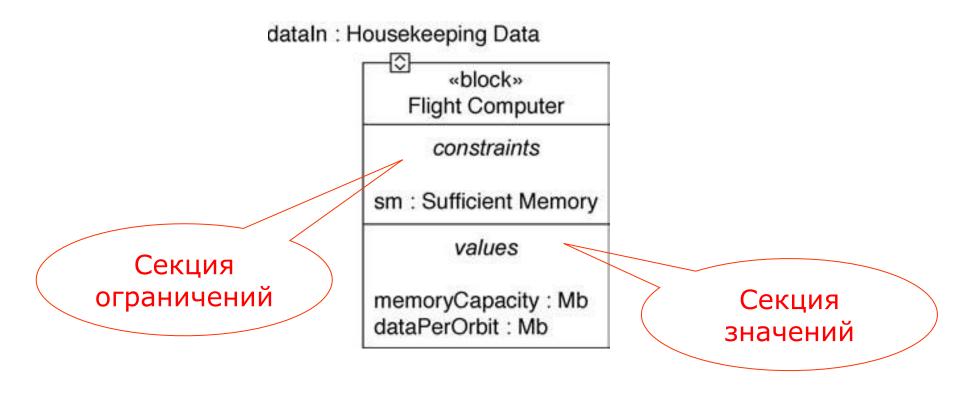
Пример диаграммы определения блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.

Заголовок диаграммы определения блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025


bdd [package] Structure [DellSat-77 Satellite Structure and Properties]

bdd [package] Structure [**DellSat-77 Satellite Structure and Properties**]

- Вид диаграммы: bdd (block definition diagram)
- Тип элемента модели: **package**
- Имя элемента модели: Structure
- Имя диаграммы: DellSat-77 Satellite
 Structure and Properties

Блок Бортовой компьютер «block» Flight Computer

МГУ им. М.В.Ломоносова. Факультет ВМК.

Секции блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Parts
- References
- Values
- Constraints
- Operations
- Receptions
- Standard ports (in SysML v1.2 and earlier)
- Flow ports (in SysML v1.2 and earlier)
- Full ports (in SysML v1.3)
- Proxy ports (in SysML v1.3)
- Flow properties (in SysML v1.3)
- Structure

Секция блока Части

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

"block"
Communication and Data
Handling Subsystem

parts

primaryComputer : Flight Computer [1] backupComputer : Flight Computer [1..2]

mod : Modulator [1] tx : Transmitter [1] ant : Antenna [2]

demod: Demodulator [1]

rx : Receiver [1]

values

mass: kg

parts эта секция представляет структуру, которая является внутренней по отношению к блоку.
 Другими словами, блок состоит из свойств своих частей.

Описание частей блока Подсистема связи и обработки данных

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

• Формат описания части:

```
<part name> : <type> [<multiplicity>]
```

- ant: Antena [2] подсистема связи и обработки данных имеет две антенны
- tx: Transmitter[1] подсистема связи и обработки данных имеет один передатчик
- backupComputer: Flight Computer[1..2] подсистема связи и обработки данных имеет от одного до двух резервных компьютеров
- Множественность 0..* или * означает ноль или больше
- Если множественность не показана, она равна 1.

Секция блока Ссылки

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

«block» Electrical Power Subsystem

references

cdhs: Communication and Data Handling Subsystem [1]

values

mass: kg

powerOutput: W

• references эта секция представляет структуру, которая является внешней по отношению к блоку. Другими словами, блок нуждается в свойствах структур на которые ссылается.

Описание ссылок блока Подсистема электропитания

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

• Формат описания ссылки:

```
<reference name> : <type> [<multiplicity>]
```

- odh: Communication and Data Handling Subsystem[1] Подсистеме электропитания требуется одна Подсистема связи и обработки данных
- Тип должен быть именем *блока* или *актера*, который создан в модели системы

Секция блока Значения DellSat-77 Satellite

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

«block» DellSat-77 Satellite

values

altitude : km

currentAttitude : Attitude = (0, 0, 0) eventTimes : Timestamp [0..*]

haveLinkToGroundStation: Boolean = false

/mass : kg

numberOfImagesStored : Integer = 0

orbitInclination: ° /period: min satelliteID: String

tangentialVelocity: km/s

• *values эта секция* представляет количество (некоторого типа), логическое значение или строку

Описание значений блока Спутник DellSat-77

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

• Формат описания значения:

```
<value name> : <type> [<multiplicity>]
```

- Тип должен быть именем типа значения, которое вы создали где-то в модели системы
- Множественность это ограничение на количество значений, которые может содержать свойствозначение
- Некоторые свойства значений <u>хранят</u> значения, а другие <u>вычисляются</u> из других свойств значений в модели системы.
- Чтобы указать, что свойство-значение вычисляется, перед его именем ставится косая черта (/)
- Свойства спутника *mass* и *period* вычисляются

Секция блока *Ограничения* DellSat-77 Satellite

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

«block»
Flight Computer

constraints

sm : Sufficient Memory

values

memoryCapacity : Mb
dataPerOrbit : Mb

- constraints эта секция представляет собой математическое отношение (уравнение или неравенство), которое накладывается на набор свойств-значений
- Свойства-ограничения используются для построения математических моделей системы, которые отображаются на параметрических диаграммах

Описание ограничений блока Sufficient Memory

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

• Формат описания ограничения:

<constraint name> : <type>

- Имя ограничения определяется разработчиком модели
- Тип должен быть именем блока ограничений (блок со стереотипом constraint), который существует в модели системы и может быть повторно использован

«block»
Flight Computer

constraints

sm : Sufficient Memory

values

memoryCapacity : Mb
dataPerOrbit : Mb

Описание ограничений блока

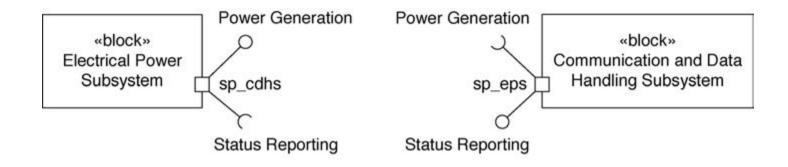
МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

• Возможно описать *математическое отношение* непосредственно в блоке в секции *constraints* как показано ниже

«block» Flight Computer

constraints


{memoryCapacity >= dataPerOrbit * 3}

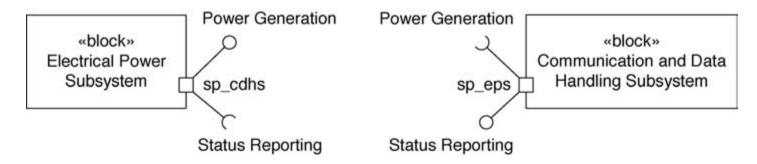
values

memoryCapacity : Mb dataPerOrbit : Mb

Порты блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

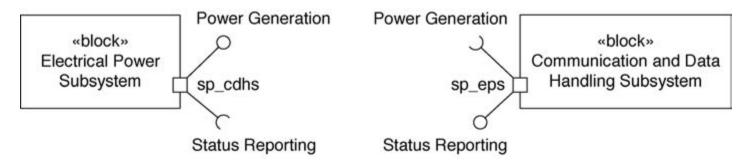
- ports свойство блока, которое представляет собой отдельную точку взаимодействия на границе блока, через которую внешние объекты могут взаимодействовать с этим блоком
 - для предоставления или запроса услуги
 - для обмена материей, энергией или данными


Назначение портов блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Благодаря портам блок моделируется как *черный ящик* по отношению к его окружению; внутренняя реализация структуры скрыта от клиентов
- Клиенты блока знают только интерфейс блока
 - услуги, которые он предоставляет и требует
 - типы материи, энергии или данных, которые могут входить и выходить
- Порт **отделяет** клиентов блока от какой-либо конкретной внутренней реализации блока
- Позволяет позже перепроектировать внутреннюю реализацию этого блока, не влияя на проект других частей вашей системы
- Это сокращает время, необходимое для внесения изменений в систему, когда этого требует заказчик

Стандартные порты блока


МГУ им. М.В.Ломоносова. Факультет ВМК.

- **Стандартный порт** моделирует услуги (поведение), которые блок предоставляет или требует в точке взаимодействия на его границе
- Отображается в виде маленького квадрата на границе блока
- Может иметь имя (например, *sp_cdhs*, *sp_eps*), которое отображается в виде строки, плавающей рядом со стандартным портом. Стандартный порт может иметь один или несколько типов; типы это интерфейсы, которые вы ему назначаете (например, выработка электроэнергии, отчеты о состоянии)

Стандартные порты блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

- **Стандартный порт** может иметь один и более типов
- Типы это интерфейсы, которые порту назначены. Например:
 - Выработка электроэнергии (Power Generation)
 - Отчеты о состоянии (Status Reporting)
- Используемый интерфейс показывается кругом
- Предоставляемый интерфейс показывается полукругом

Интерфейсы стандартного порта блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

«interface»
Power Generation
operations
outePower(sourceVoltage :) : VDC
receptions

	«interface»
	Status Reporting
	operations
transmitT	althAndStatus(report : Parameter [1*]) elemetryToGroundStation(data : er [*]) : Packet [*]
	receptions
time : Tim	powerOutputDataSampled(power : W,

- **Интерфейс стандартного порта** блок со стереотипом **interface**
- Имеет набор *операций (operations)*
- Имеет набор приемов (receptions)

Интерфейсы стандартного порта блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

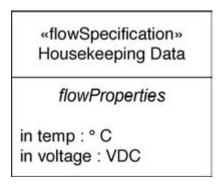
- Моделирование со стандартными портами и интерфейсами позволяет разъединить клиентов и поставщиков
- Проектируются абстракции, а не конкретные реализации
- Такая расширяемость позволяет добавлять новых поставщиков интерфейсов в любое время, не затрагивая существующих клиентов этих интерфейсов
- Добавлять новых клиентов интерфейсов независимо от используемой реализации

Потоковые порты блока

 Потоковый порт (flow port) моделирует типы материи, энергии или данных, которые могут входить в блок или выходить из блока в точке взаимодействия на его границе

Потоковые порты блока

МГУ им. М.В.Ломоносова. Факультет ВМК.

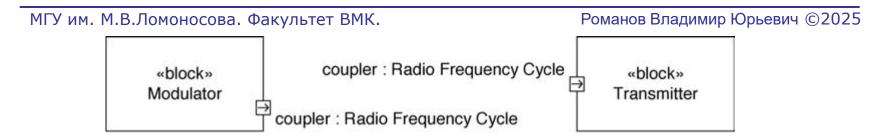


- Отображается потоковый порт в виде небольшого квадрата на границе блока
- Потоковый порт имеет символ (<>), показанный внутри маленького квадрата
- может иметь имя (например, dataOut, dataIn)
- может иметь тип (например, Housekeeping Data).
- Имя и тип отображаются в виде строки в формате:
 - имя: тип

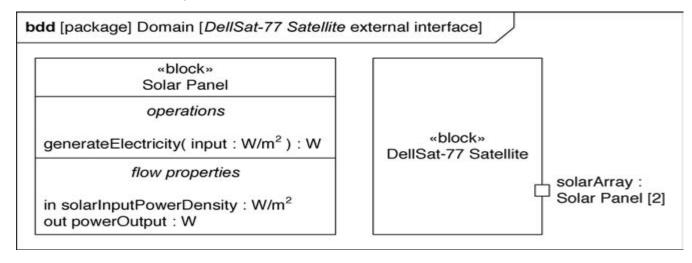
Не атомарные потоковые порты блока

- **Не атомарный** порт потока используется когда нужно смоделировать *несколько* типов элементов, которые могут входить или выходить через этот порт.
- Тип порта неатомарного потока должен быть именем спецификации потока существующую в модели (блок со стереотипом flowSpecification)

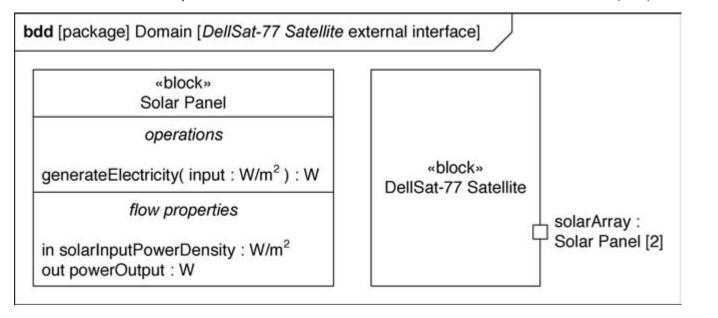
Не атомарные потоковые порты блока


- Свойство потока представляет конкретный элемент, который может входить в блок или выходить из блока через порт потока
- Свойство потока имеет направление, имя и тип, которые отображаются в виде строки в следующем формате:
 - <direction> <name> : <type>
- Направление может быть in, out, или inout
- Имя определяется разработчиком модели
- Тип должен быть именем типа значения, блока или сигнала созданного в модели

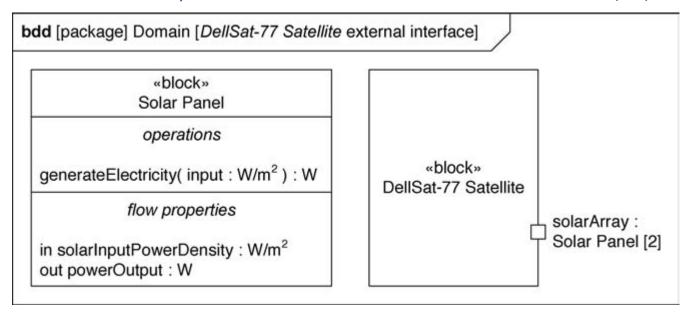
Не атомарные потоковые порты блока


 Символ (~)указывает на то, что порт потока dataOut сопряжен. Это означает, что направления свойств потока в спецификации потока служебных данных меняются местами для этого порта потока

Атомарные потоковые порты блока

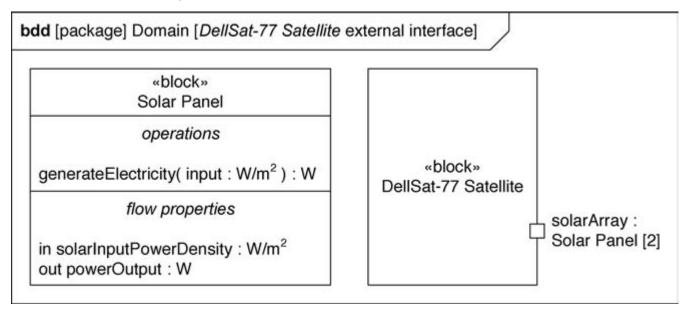

- **Атомарный** порт потока используется когда нужно смоделировать <u>один</u> тип элементов, которые могут входить или выходить через этот порт
- Символ (->)внутри маленького квадрата представляет собой стрелку, указывающую направление потока
- Тип порта атомарного потока должен быть именем типа значения, блока или сигнала, который создан в модели системы

МГУ им. М.В.Ломоносова. Факультет ВМК.

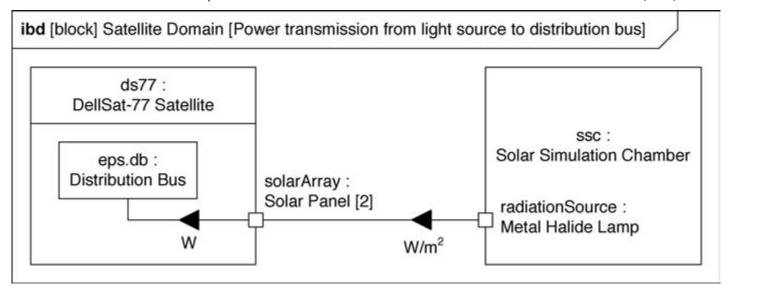

- Порт всегда типизируется каким-то другим блоком, который определен в иерархии модели
- Порт представляет собой один или несколько экземпляров другого блока, которые существуют на границе первого блока
- Блок Solar Panel служит типом порта SolarArray, который принадлежит блоку DellSat-77 Satellite. Порт solarArray имеет множественность 2

МГУ им. М.В.Ломоносова. Факультет ВМК.

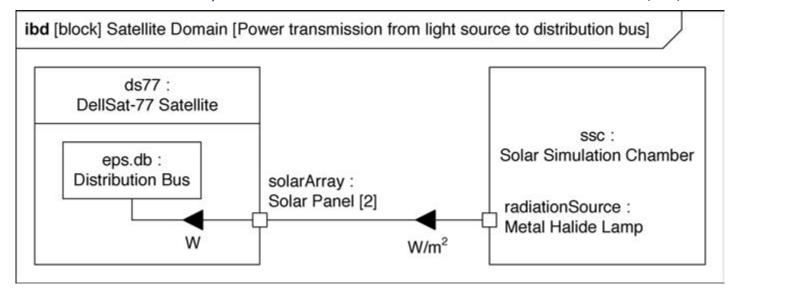
- Каждый экземпляр DellSat-77 Satellite будет владеть двумя экземплярами Solar Panel
- Эти два экземпляра будут существовать на границе между спутником и его средой


МГУ им. М.В.Ломоносова. Факультет ВМК.

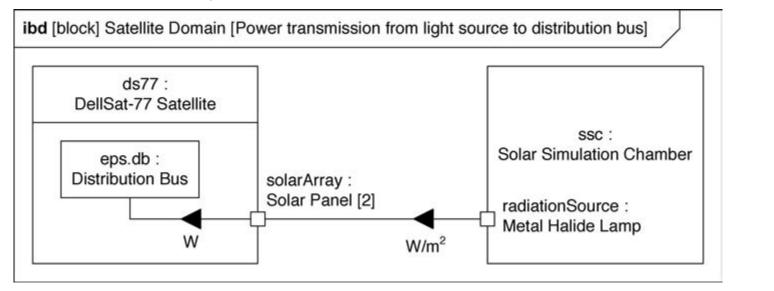
- Блок *Solar Panel* отображает три свойства, которыми он владеет: одна операция и два свойства-потока
- Поскольку блок *Solar Panel* типизирует порт *solarArray*, эти три характеристики доступны для всех структур, которые взаимодействуют со спутником через его солнечную батарею


МГУ им. М.В.Ломоносова. Факультет ВМК.

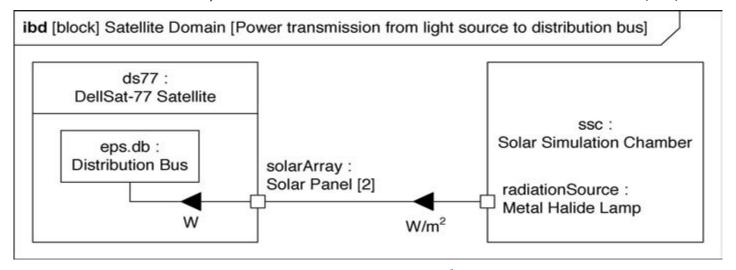
Романов Владимир Юрьевич ©2025


• Внешние по отношению к блоку Solar Panel структуры могут вызывать операцию generateElectricity и обмениваться со спутником элементами, которые согласуются (по направлению и типу) со свойствами потока

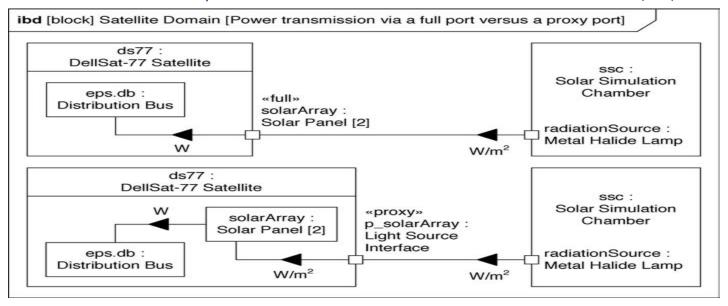
МГУ им. М.В.Ломоносова. Факультет ВМК.


- На диаграмме показаны свойство части ssc (типа Solar Simulation Chamber) и свойство части ds77 (типа DellSat-77 Satellite)
- Разъем соединяет порт radiationSource (на ssc) с портом solarArray (на ds77)

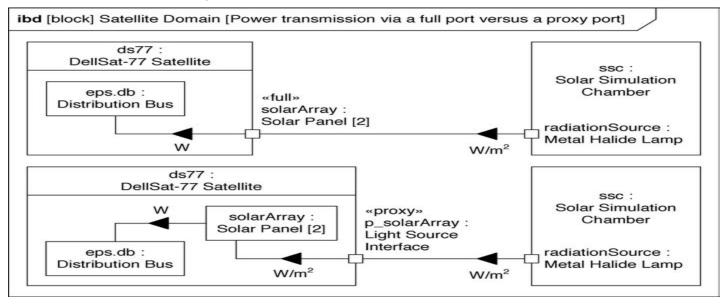
МГУ им. М.В.Ломоносова. Факультет ВМК.


- На соединителе существует поток элементов, который сообщает, что значения типа W/m2 могут передаваться от radiationSource к solarArray во время работы системы
- Этот поток элементов согласуется по направлению и типу со свойством потока solarInputPowerDensity блока Solar Panel

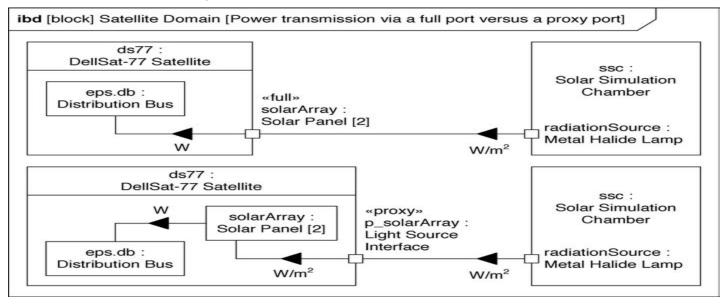
МГУ им. М.В.Ломоносова. Факультет ВМК.


- Свойство части db типа Distribution Bus вложенно в ds77
- Использование записи через точку означает, что ds77 владеет свойством части, eps, которое, в свою очередь, владеет свойством части db

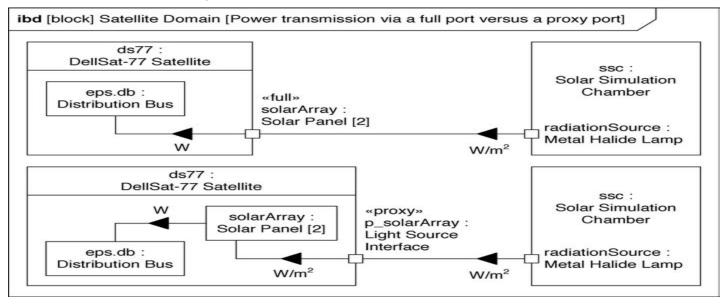
МГУ им. М.В.Ломоносова. Факультет ВМК.


- Соединитель соединяет порт solarArray на границе спутника со свойством части db внутренним по отношению к спутнику
- Разъем имеет поток элементов W, который сообщает, что выход солнечной батареи направляется внутри к распределительной шине спутника
- Поток элементов согласуется по направлению и типу со свойством потока powerOutput блока Solar Panel

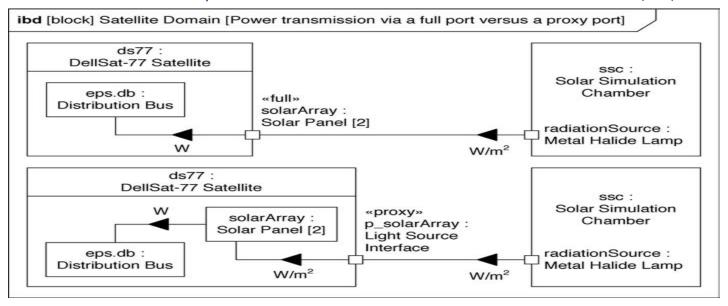
МГУ им. М.В.Ломоносова. Факультет ВМК.


- Полный порт в верхней части диаграммы и проксипорт в нижней части
- Полный порт имеет стереотип *«full»* в начале строки имени
- Прокси-порт имеет стереотип «proxy» в начале строки имени

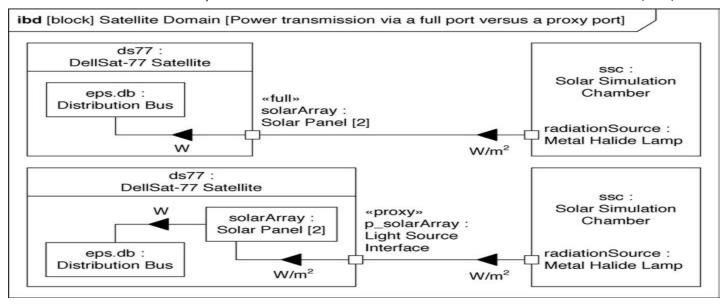
МГУ им. М.В.Ломоносова. Факультет ВМК.


- Полный порт представляет собой свойство части блокавладельца, которое просто существует на границе этого блока
- Полный порт задается блоком
- Полный порт может владеть поведением и выполнять его
- Может может иметь свои вложенные свойства-части

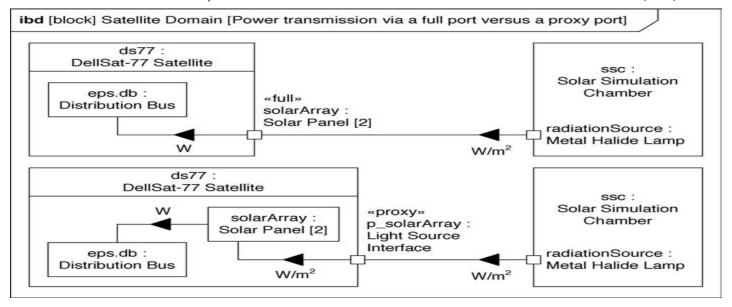
МГУ им. М.В.Ломоносова. Факультет ВМК.


- Стереотип *«full»* у порта *solarArray* означает, что блок *DellSat-77 Satellite* владеет свойством части с именем *solarArray* типа *Solar Panel* с кратностью 2
- Это части, как и вложенное свойство части *db*
- Моделирование *SolarArray* как полного порта означает, что порт существует на границе спутника

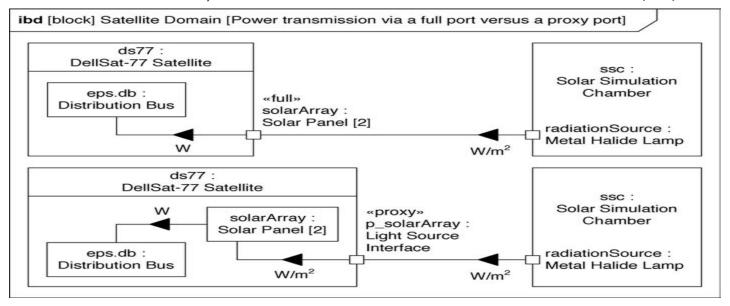
МГУ им. М.В.Ломоносова. Факультет ВМК.


- В качестве свойства части полный порт solarArray может владеть и выполнять действия (например, операцию generateElectricity в блоке Solar Panel)
- Полный порт SolarArray может получать элементы, может их преобразовать, а затем выводить другие элементы возможно другого типа

МГУ им. М.В.Ломоносова. Факультет ВМК.


- Полный порт SolarArray может получать экземпляры типа значения W/m² из внешней среды и может выводить экземпляры типа значения W на распределительную шину спутника
- Полный порт *SolarArray* на самом деле выполняет поведение, которое преобразует его вход в другой тип вывода

МГУ им. М.В.Ломоносова. Факультет ВМК.


- Прокси-порт не представляет собой часть собственности блока-владельца
- Прокси-порт представляет собой внешний интерфейс своего блока-владельца
- Прокси-порт представляет собой подмножество поведенческих и структурных характеристик блокавладельца доступных для внешних блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Стереотип «proxy» у порта p_solarArray означает, что этот порт не представляет собой часть, которая может выполнять действия или отправлять и получать свойства потока
- Прокси-порт p_solarArray определяет точку взаимодействия между внешним объектом (камерой имитации солнечной активности) и одной из внутренних частей спутника (солнечной батареей)

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Экземпляры типа значения W/m2, поступающие на порт прокси, просто перенаправляются в свойство части solarArray
- Сам прокси-порт никак не может воздействовать на эти экземпляры. Поведение, которое вызывается на этом порту, фактически выполняется свойством части solarArray

Блок интерфейса и прокси-порт

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК. bdd [package] Domain [DellSat-77 Satellite external interface for light sources] «interfaceBlock» «block» «block» Solar Panel Light Source Interface DellSat-77 Satellite operations operations parts generateElectricity(input: generateElectricity(input : solarArray: W/m2): W W/m²): W Solar Panel [2] flow properties flow properties in solarInputPowerDensity: in solarInputPowerDensity: W/m^2 W/m^2 «proxy» p_solarArray: out powerOutput: W Light Source Interface

- Порт прокси типизируется блоком интерфейса
- У блока-интерфейса стереотип «interfaceBlock»
- Блока-интерфейс должен уже быть в модели, чтобы указать подмножество поведенческих и структурных характеристик другого блока, которые доступны через определенный прокси-порт

Блок интерфейса и прокси-порт

 W/m^2

out powerOutput: W

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК. bdd [package] Domain [DellSat-77 Satellite external interface for light sources] «interfaceBlock» «block» «block» Solar Panel Light Source Interface DellSat-77 Satellite operations operations parts generateElectricity(input: generateElectricity(input : solarArray: W/m2): W W/m²): W Solar Panel [2] flow properties flow properties in solarInputPowerDensity: in solarInputPowerDensity:

 Интерфейсный блок Light Source Interface содержит подмножество функций, показанных в блоке Solar Panel: одну операцию и одно свойство потока

«proxy» p_solarArray:

Light Source Interface

 W/m^2

• Интерфейс Light Source Interface типизирует проксипорт p_solarArray на блоке DellSat-77 Satellite

Блок интерфейса и прокси-порт

Романов Владимир Юрьевич ©2025 МГУ им. М.В.Ломоносова. Факультет ВМК. bdd [package] Domain [DellSat-77 Satellite external interface for light sources] «interfaceBlock» «block» «block» Solar Panel Light Source Interface DellSat-77 Satellite operations operations parts generateElectricity(input: generateElectricity(input : solarArray: W/m2): W W/m²): W Solar Panel [2] flow properties flow properties in solarInputPowerDensity: in solarInputPowerDensity: W/m^2 W/m² «proxy» p_solarArray: out powerOutput: W Light Source Interface

• Этот вид модели показывает, что спутник владеет внутренней частью solarArray и предлагает внешний доступ к двум своим функциям через прокси-порт p_solarArray

Характеристика поведения. Операции

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Операция в разделе операций блока следующий формат:
 <operation name> (<parameter list>): <return type> [<multiplicity>]
- Имя операции определяется разработчиком модели.
- Список параметров представляет собой разделенный запятыми список из нуля или более параметров
- Тип возвращаемого значения (если есть) должен быть именем типа значения или блока в модели системы
- Множественность это ограничение на количество экземпляров возвращаемого типа, которые операция может вернуть вызывающему объекту после завершения

Характеристика поведения. Операции

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Параметры в списке параметров представляют собой входы или выходы операции. Каждый параметр в списке отображается в следующем формате: <direction> <parameter name> : <type> [<multiplicity>] = <default value>
- Направление может быть in, out, или inout
- Имя параметра определяется разработчиком модели
- Тип должен быть именем типа значения или блока, который существует в вашей модели
- Множественность это ограничение на количество экземпляров типа, которые может представлять параметр
- Значение по умолчанию это значение, присвоенное параметру, если значение не указано в качестве аргумента при вызове операции

Характеристика поведения. Операции

МГУ им. М.В.Ломоносова. Факультет ВМК.

```
*block**
Communication and Data Handling Subsystem
operations
collectHealthAndStatus( report : Parameter [1..*] )
convertAnalogToDigital ( input : Real, time : Timestamp ) : Parameter generateCommandResponse() : Command Response processCommand( commandInput : Command [1..*] ) : Status storeData( currentValues : Parameter [*] )
transmitTelemetryToGroundStation( data : Parameter [*] ) : Packet [*]
```

- Блоки «Electrical Power Subsystem» и «Communication and Data Handling Subsystem» владеют несколькими операциями представляющими поведение
- Пример операции *processCommand*. Клиент может вызвать подсистему связи и обработки данных для выполнения этой операции
- При вызове клиент может передать несколько команд как входные данных операции. При завершении операции она вернет значение состояния

Характеристика поведения. Прием (reception)

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Прием (reception) представляет собой поведение, которое выполняет блок, когда клиент отправляет сигнал, который его запускает. Прием вызывается событием сигнала
- Различие между *приемом* и *операцией* в том, что прием всегда представляет собой <u>асинхронное</u> <u>поведение</u>
- <u>Асинхронное поведение</u> означает, что клиент отправляет *сигнал*, который запускает прием после получения, и немедленно продолжает свое собственное выполнение; он не ждет завершения приема (или даже его начала)

Характеристика поведения. Сигнал и прием

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Сигнал является элементом модели
- Сигнал может представлять любой тип материи, энергии или данных, которые одна часть системы посылает другой части обычно с целью запуска поведения на принимающей стороне
- Как и блок, сигнал может иметь свойства. Чаще всего эти свойства представляют собой данные, которые сигнал переносит от клиента к цели
- Когда сигнал достигает цели и вызывает прием, свойства сигнала становятся входными данными для этого приема

Характеристика поведения. Сигнал *AnalogTempDataSampled*

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

«signal»
AnalogTempDataSampled

properties

temp: ° C

time: Timestamp

- Сигнал с именем AnalogTempDataSampled имеет два свойства: temp (типа °C) и time (типа Timestamp)
- Когда клиент генерирует экземпляр этого сигнала во время работы системы, он может указать значения для двух свойств

Характеристика поведения. Прием сигнала

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

*block**
Communication and Data Handling Subsystem
receptions
*signal** analogTempDataSampled(temp : ° C, time : Timestamp)
*signal** storedCommandExecutionTime(id : Command ID)

- Клиент может отправить экземпляр сигнала цели, которая его воспринимает
- Например, сигнал AnalogTempDataSampled блоку Communication and Data Handling Subsystem
- Структура является подходящей целью для сигнала, если ей принадлежит прием с тем же именем, что и у сигнала
- Прием должен иметь параметр с совместимым типом для каждого свойства сигнала
- Блок Communication and Data Handling Subsystem соответствует этим критериям

Характеристика поведения. Формат приема

МГУ им. М.В.Ломоносова. Факультет ВМК.

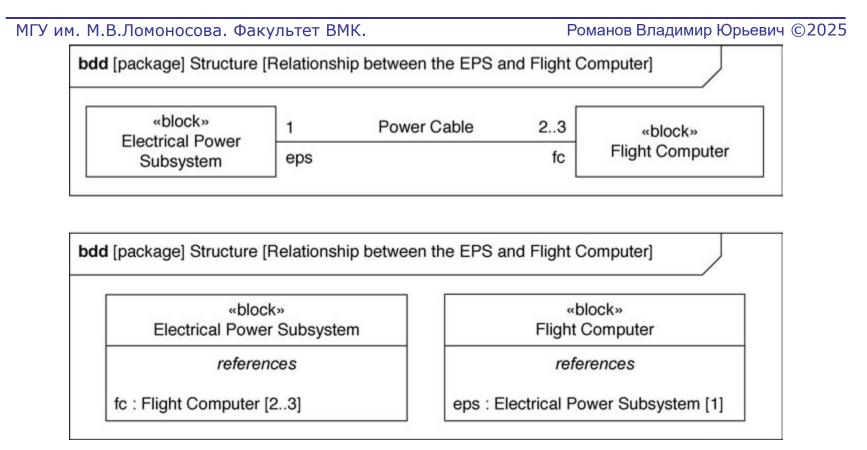
- При отображении приема в разделе приемов блока строка имеет следующий формат: «signal» <reception name> (<parameter list>)
- Ключевое слово «signal» всегда должно предшествовать названию приема.
- Имя приема должно совпадать с именем сигнала в модели, который его запускает.
- На диаграмме может быть показано столько параметров, сколько необходимо в списке параметров

Характеристика поведения. Формат параметра приема

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Каждый параметр в списке отображается в следующем формате: cparameter name> : <type> [<multiplicity>] = <default value>
- Имя параметра определяется разработчиком модели
- Тип должен быть именем типа значения или блока, который существует где-то в вашей модели
- Множественность это ограничение на количество экземпляров типа, которые может представлять параметр
- Значением по умолчанию является значение, присвоенное параметру, если в соответствующем свойстве сигнала значение не указано
- Приемы не могут иметь возвращаемых типов
- Параметры приема могут быть только входными

Отношение ассоциации

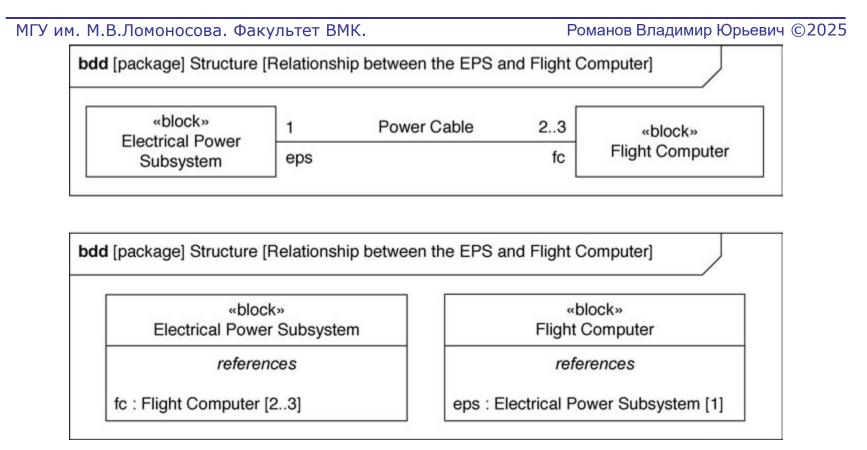

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Свойство ссылки представляет структуру, которая является внешней по отношению к блоку
- Свойство части представляет структуру, которая является <u>внутренней</u> по отношению к блоку
- Свойства-ссылки и свойства-части соответствуют двум типам ассоциаций, которые вы часто создаете между блоками и отображаете на **BDD**: ссылочные и составные ассоциации
- Ассоциация это альтернативная запись для передачи такого рода структурных отношений в системе.

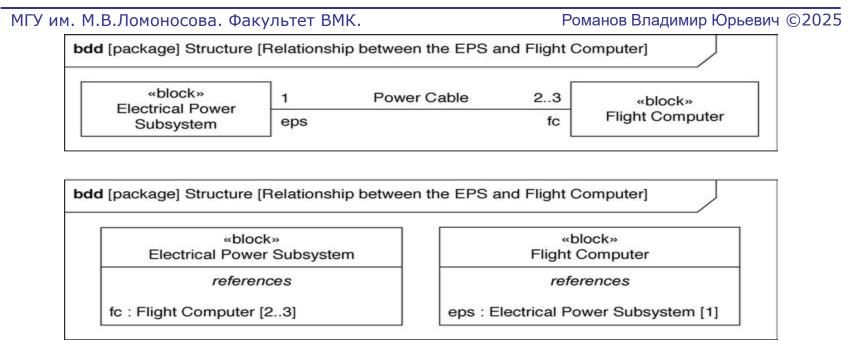
Отношение ассоциации Ссылочные ассоциации

МГУ им. М.В.Ломоносова. Факультет ВМК.

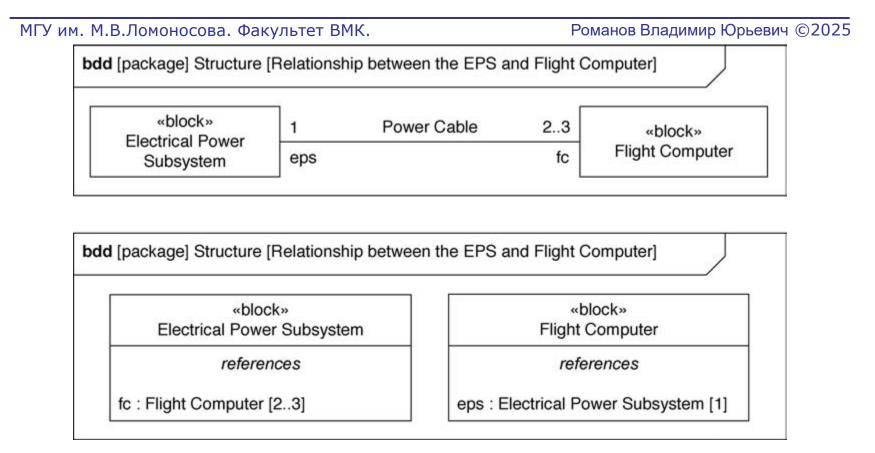
- Ссылочная связь между двумя блоками означает, что между экземплярами этих блоков может существовать соединение.
- Экземпляры блоков могут получать доступ друг к другу для какой-либо цели через соединение.
- Обозначение ссылки на диаграмме представляет собой сплошную линию между двумя блоками.
- Открытая стрелка ровно на одном конце означает однонаправленный доступ
- Отсутствие стрелок на обоих концах означает двунаправленный доступ



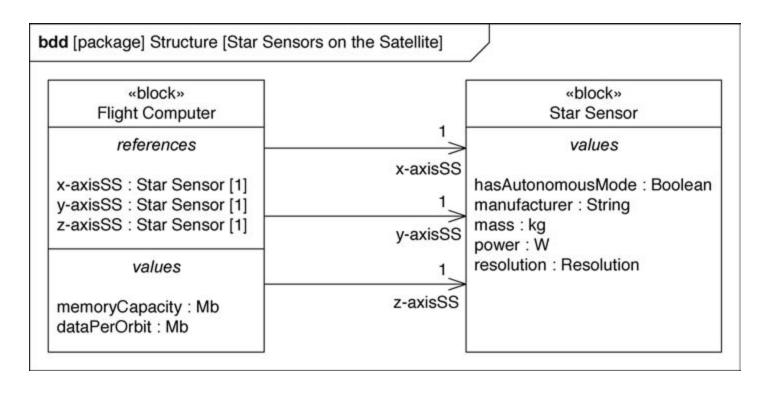
Показана ссылочная ассоциация между блоком *Electric Power Subsystem* и блоком *Flight Computer*.


Отношение ассоциации

МГУ им. М.В.Ломоносова. Факультет ВМК.


- Ассоциации могут иметь несколько меток.
- Можно отобразить имя ассоциации, плавающее рядом с серединой строки
- Можно дополнительно отобразить имя роли и множественность на любом конце строки.
- Имя ассоциации это определяемая разработчиком модели строка, описывающая тип соединения, которое может существовать между экземплярами двух блоков.

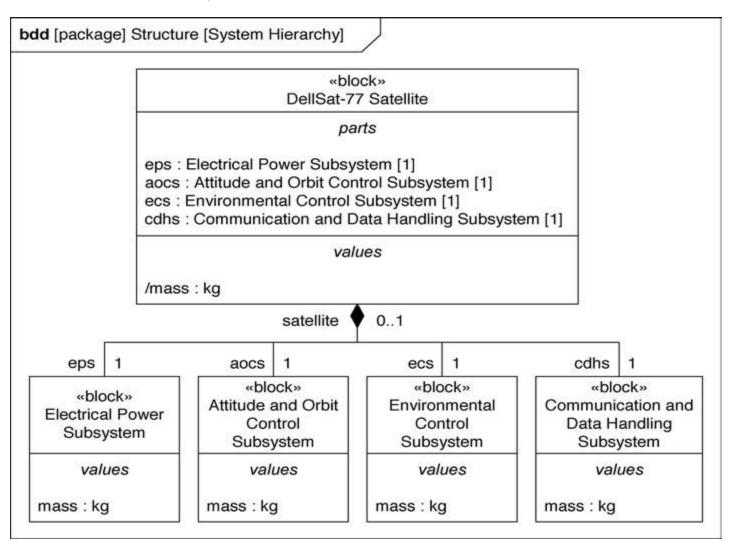
Имя показанной связи *Power Cable* описывает тип соединения, которое может существовать между подсистемой электропитания и бортовым


- В верхней диаграмме имя роли *eps* представляет свойство-ссылку, принадлежащее блоку *Flight Computer* и типом которого является блок *Electric Power Subsystem*
- Имя роли *fc* представляет свойство-ссылку, которое принадлежит блоку *Electric Power Subsystem* и типом которого является блок *Flight Computer*

Нижняя диаграмма показывает эквивалентное представление той же модели, используя нотацию *секции ссылок* вместо *ассоциаций ссылок*

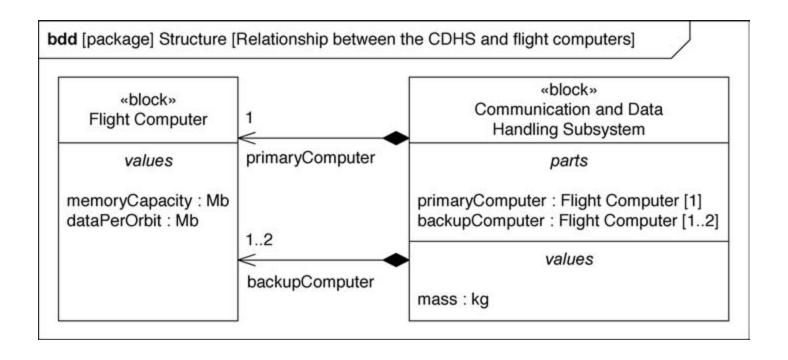
Отношение ассоциации Пример нескольких ссылочных свойств одного типа

МГУ им. М.В.Ломоносова. Факультет ВМК.


Отношение ассоциации Составные ассоциации

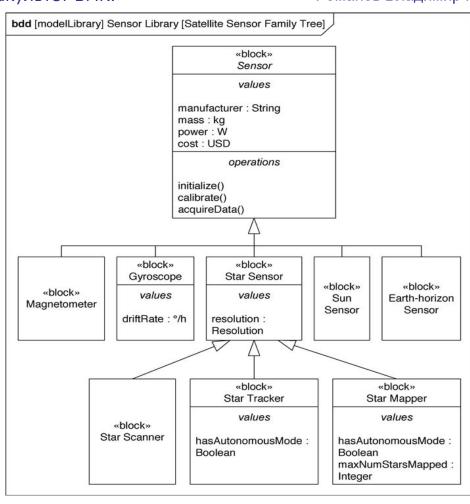
МГУ им. М.В.Ломоносова. Факультет ВМК.

- Составная ассоциация между двумя блоками передает структурную декомпозицию.
- Экземпляр блока на составном конце <u>состоит</u> из некоторого количества экземпляров блока на конце части
- Обозначение составной ассоциации представляет собой сплошную линию между двумя блоками со сплошным ромбом на составном конце.
- Открытая стрелка на конце части линии передает однонаправленный доступ от составного блока к его части;
- Отсутствие стрелки означает двунаправленный доступ (т. е. часть будет иметь ссылку на составной блок).


Отношение ассоциации Составные ассоциации

МГУ им. М.В.Ломоносова. Факультет ВМК.

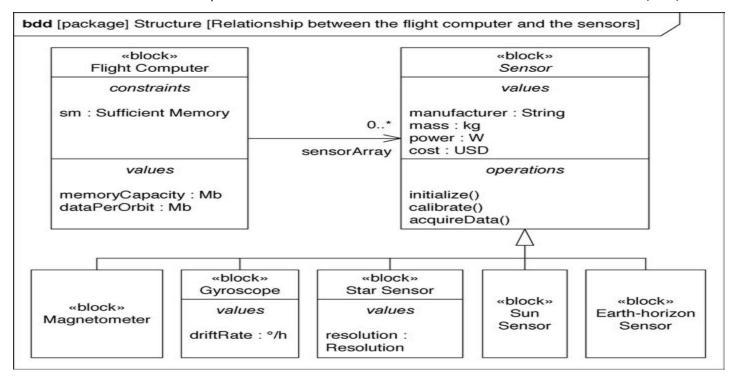
Отношение ассоциации Пример нескольких составных свойств одного типа


МГУ им. М.В.Ломоносова. Факультет ВМК.

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Обобщение передает наследование между двумя элементами:
 - более обобщенным элементом супертипом,
 - и более специализированным элементом подтипом
- Обобщения используются для создания деревьев классификации (иерархий типов) в модели системы
- Обозначение обобщения представляет собой сплошную линию с полой треугольной стрелкой на конце супертипа

МГУ им. М.В.Ломоносова. Факультет ВМК.

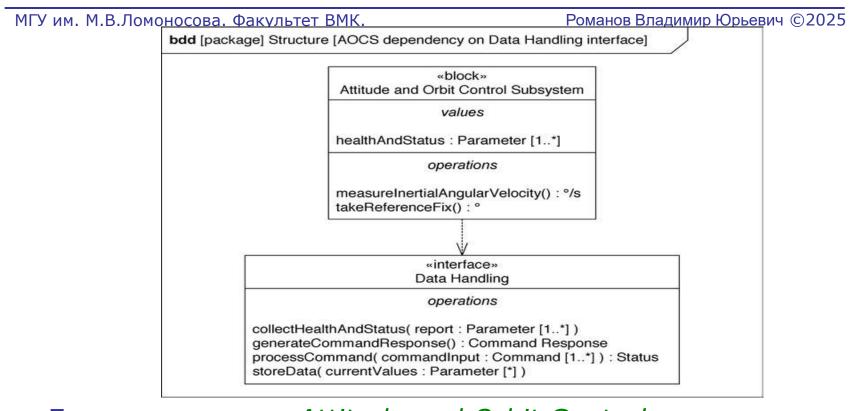

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Блок Star Sensor является специализацией блока Sensor
- Блок Star Sensor
 - Он наследует четыре свойства-значения и три операции из блока Sensor
 - Добавляет пятое свойство-значение resolution, которого нет в блоке Sensor
- Блок Star Mapper
 - Наследует пять свойств-значений и три операции из блока Star Sensor
 - Добавляет два новых свойства-значения hasAutonomousMode и maxNumStarsMapped

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Обобщения создаются для определения абстракции в проекте системы.
- Супертип (такой как Sensor) является абстракцией своих подтипов. Он выделяет те черты, которые являются общими для подтипов.
- Абстракции позволяют определить общую функцию в супертипе, и эта общая функция распространяется вниз по иерархии типов на все подтипы
- При изменении этой общей функции и одновременно будут обновлены и все подтипы в модели
- Абстракция принцип проектирования позволяющий **взаимозаменяемость**: подтип будет принят везде, где требуется его супертип

МГУ им. М.В.Ломоносова. Факультет ВМК.


- Блок Flight Computer имеет ссылочное свойство с именем sensorArray типа Sensor
- Любой из пяти подтипов *Sensor* будет приемлемым. к бортовому компьютеру, потому что все они наследуют эти общие черты от своего супертипа *Sensor*

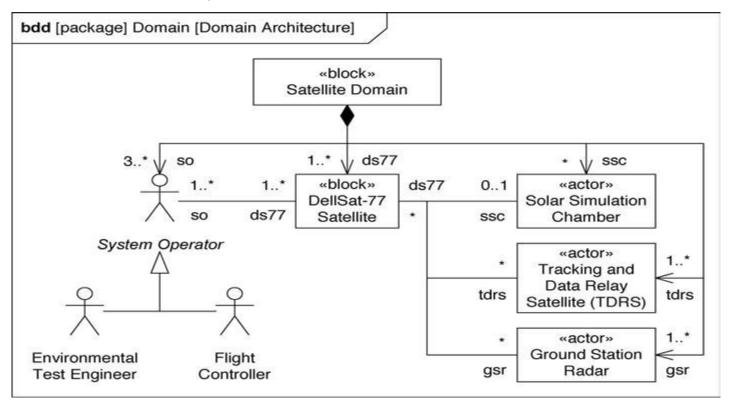
Отношение зависимости

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Зависимость это отношение означает что один элемент модели (клиент) зависит от другого элемента модели (поставщика).
- Зависимость означает, что при изменении элемента поставщика *может* также измениться элемент клиента
- Отношение зависимости показывается пунктирной линией с открытой стрелкой, которая проводится от клиента к поставщику.

Отношение зависимости

- Блок подсистемы Attitude and Orbit Control Subsystem является клиентом, а интерфейс Data Handling поставщиком.
- Блок зависит от интерфейса. Если интерфейс изменится, возможно, потребуется изменить и блок.


Актеры

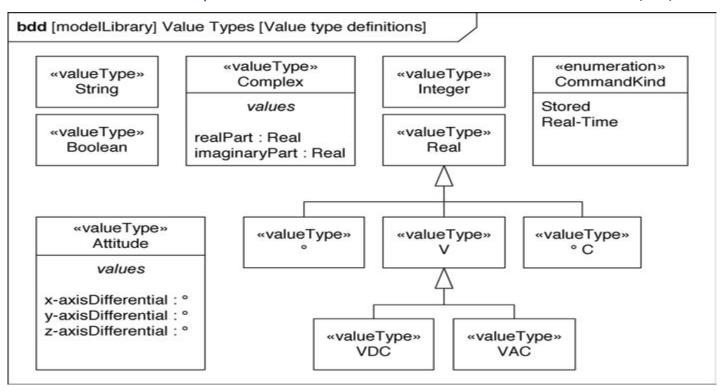
МГУ им. М.В.Ломоносова. Факультет ВМК.

- Актер представляет кого-то или что-то, что имеет внешний интерфейс с вашей системой
- Имя актера передает роль, которую играет человек, организация или другая система при взаимодействии с системой
- Возможны два обозначения актера:
 - фигурка человека из палочек
 - Прямоугольник с ключевым словом «актер», предшествующим имени актера
- Возможны отношения обобщения между актерами
- Возможны отношения ассоциации между актерами и блоками

Актеры

МГУ им. М.В.Ломоносова. Факультет ВМК.

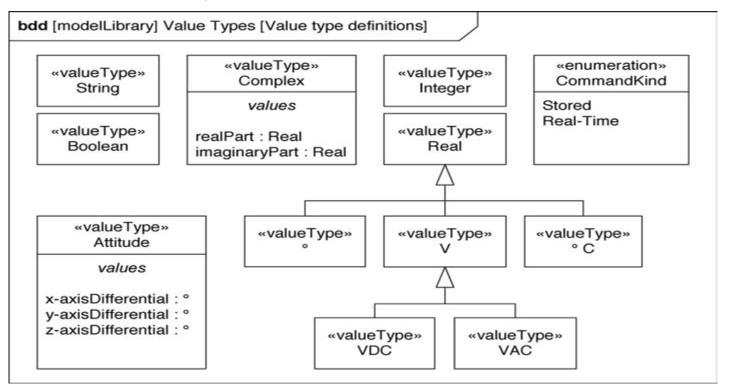
- Невозможно отношение обобщения между актером и блоком.
- У актера не может быть ролей в отношении составной ассоциации


Типы значений

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Тип значения это элемент определения, который обычно определяет тип количества
- Два типа значений *Boolean* и *String* не являются количествами
- Существует три вида типов значений: примитивные, структурированные и перечисляемые
- Примитивный тип значения не имеет внутренней структуры (у него нет никаких свойств значения). Его обозначение представляет собой прямоугольник со стереотипом «valueType» предшествующим имени
- Существуют четыре примитивных типа значений: String, Boolean, Integer и Real
- Возможно определить свои собственные примитивные типы значений как специализации (подтипы) этих четырех.

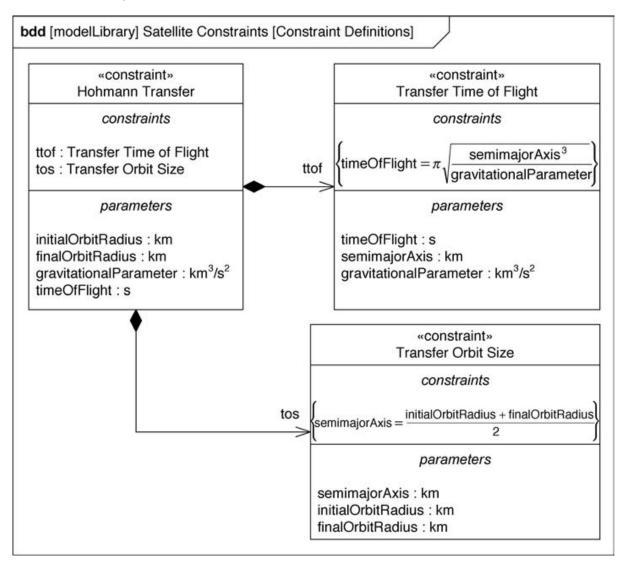
Типы значений


МГУ им. М.В.Ломоносова. Факультет ВМК.

- Три типа значений (°, **V** и °**C**), которые являются подтипами *Real*
- Тип структурированных значений Complex состоит из двух свойств-значений realPart и imaginaryPart, оба типа Real

Типы значений

МГУ им. М.В.Ломоносова. Факультет ВМК.



- Перечислимый тип значения просто определяет набор литералов (допустимых значений)
- Перечисление с именем CommandKind определяет два литерала: Stored и Real-Time

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Блок ограничения является элементом определения, определяющим логическое выражение ограничения (выражение, которое должно оцениваться как истинное или ложное).
- Выражение ограничения в блоке ограничения, представляет собой уравнение или неравенство: математическое отношение, которое вы используете для ограничения свойств значений блоков.
- Причины ограничений:
 - Для указания утверждений о допустимых значениях
 - Выполнение инженерных расчетов на этапе проектирования
- Переменные в выражении ограничения называются параметрами ограничения. Как правило, они представляют количества, поэтому их чаще всего типизируют по типам значений

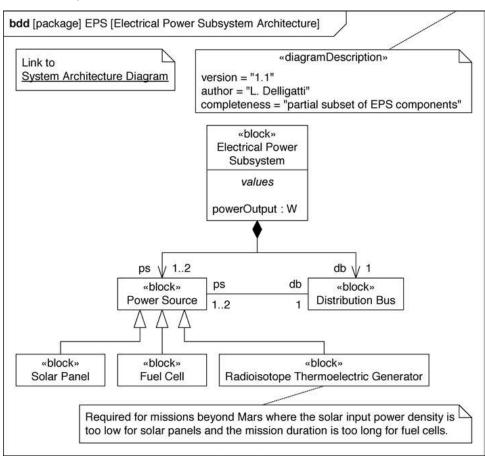
МГУ им. М.В.Ломоносова. Факультет ВМК.

МГУ им. М.В.Ломоносова. Факультет ВМК.

- На предыдущем рисунке показан блок ограничения с именем *Transfer Orbit Size*, который определяет выражение ограничения, содержащее три параметра ограничения: *semimajorAxis*, *initialOrbitRadius* и *finalOrbitRadius*.
- Эти три параметра ограничения имеют тип значения km.
- Блок ограничений Hohmann Transfer состоит из двух свойств ограничений ttof и tos, которые представляют собой использование блоков ограничений Transfer Time of Flight и Transfer Orbit Size соответственно.
- Блок *Hohmann Transfer* определяет выражение ограничения, которое является составным из двух более простых выражений ограничения

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Обозначение блока ограничения представляет собой прямоугольник со стереотипом «constraint», предшествующим имени.
- Выражение ограничения всегда отображается между фигурными скобками ({}) в разделе ограничений.
- Параметры ограничения в выражении ограничения перечислены по отдельности в разделе параметров.


Комментарии

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Комментарий является элементом модели состоящим из одного атрибута: текстовой строки, называемой телом.
- В *теле* комментария можно передать любую необходимую информацию
- Можно дополнительно прикрепить комментарий к другим элементам на диаграмме, чтобы предоставить дополнительную информацию о них.
- Можно использовать комментарии к любому из девяти типов диаграмм **SysML**.
- Обозначение комментария обычно называют символом примечания: прямоугольник, правый верхний угол которого загнут.
- Используется пунктирная линия для прикрепления комментария к другим элементам

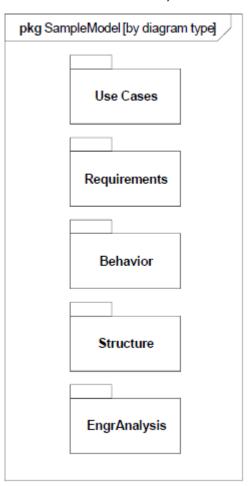
Комментарии

МГУ им. М.В.Ломоносова. Факультет ВМК.

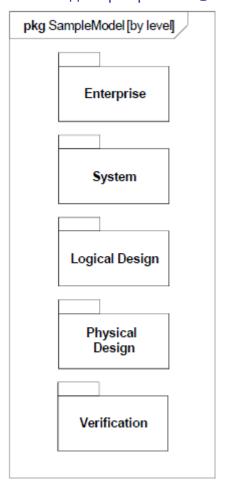
МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

Диаграмма пакетов


Диаграмма пакетов

МГУ им. М.В.Ломоносова. Факультет ВМК.


- Диаграмма пакетов используется для организации модели.
 - Группирует элементы модели в пространство имен
 - Часто представлена в браузере инструментов
 - Поддерживает управление конфигурацией модели
- Модель может быть организована несколькими способами
 - По системной иерархии (например, предприятие, система, компонент)
 - По разновидности диаграмм (например, требования, варианты использования, поведение)
 - Позволяет использование точек зрения для расширения организации модели
- Отношения импорта уменьшают потребность в полном имени (package1::class1)

Организация модели с помощью диаграмм пакетов

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

По разновидности диаграмм

По структуре модели

Точки зрения на диаграммах пакетов

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Вид (view) соответствует определенной точке зрения на модель
 - Импортирует элементы модели из нескольких пакетов
 - Может представлять запрос к модели на основе некоторых критериев запроса

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

Диаграмма внутренности блоков

Назначение диаграммы внутренних блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Диаграмма внутренности блока (IBD) предназначена для указания внутренней структуры блока
- В отличие от диаграммы определения блока, IBD не отображает блоки; она отображает использование блока, то есть свойства частей и свойства ссылок блока, имя которого указано в заголовке диаграммы
- IBD позволяет вам передавать дополнительную информацию, которую вы не можете передать с помощью диаграммы:
 - Связь между свойствами частями блока и свойствами ссылками блока
 - Типы материи, энергии или данных, которые проходят через соединения
 - Услуги, которые предоставляются соединениями и требуются для соединений

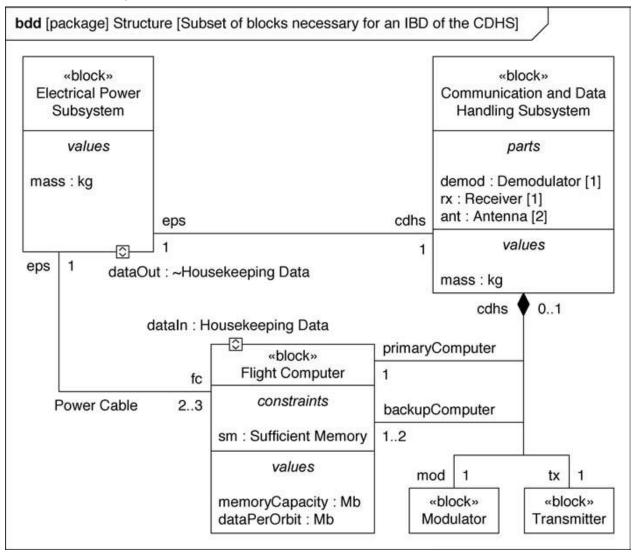
Назначение диаграммы внутренности блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Диаграмма внутренности блока и диаграмма определения блока обеспечивают дополнительные представления блока
- Сначала диаграмма определения блока позволяет определить блок и его свойства
- После этого можно использовать диаграмму внутренности блока для отображения внутренней конфигурации этого блока: определенного набора связей между свойствами блока
- Из-за такой связи этих видов диаграмм они часто создаются попарно

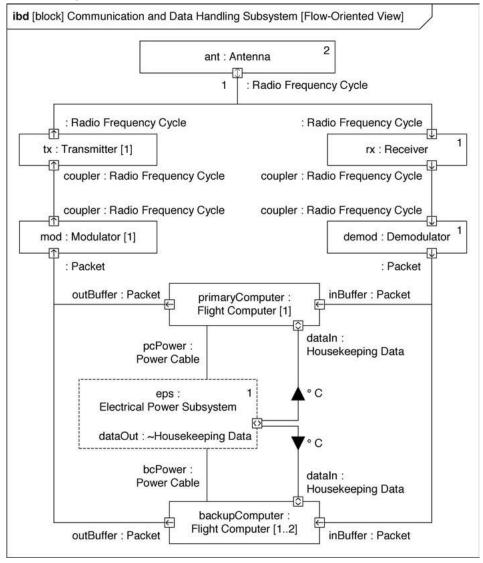
Фрейм диаграммы внутренности блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.


Романов Владимир Юрьевич ©2025

ibd [block] Communication and Data Handling Subsystem [Flow-Oriented View]

- Сокращение для типа диаграммы для диаграмма внутренности блока ibd.
- Единственным допустимым типом элемента модели для этой диаграммы является блок.
- Фрейм диаграммы всегда представляет блок уже определенный в модели системы.
- Внутри фрейма можно отобразить свойства-части этого блока и свойства-ссылки, а также связывающие их соединители.
- Название диаграммы Flow-Oriented View.
- Эта диаграмма представляет блок Communication and Data Handling Subsystem уже существующий в модели системы.
- Этот блок является владельцем свойств-частей и свойствссылок, которые показаны на диаграмме.


Диаграмма определения блоков (дополнение к диаграмме внутренности блока)

МГУ им. М.В.Ломоносова. Факультет ВМК.

Диаграмма внутренности блока Communication and Data Handling Subsystem

МГУ им. М.В.Ломоносова. Факультет ВМК.

Фрейм диаграммы внутренности блоков

МГУ им. М.В.Ломоносова. Факультет ВМК.

- На диаграмме определения блока показано, что блок Communication and Data Handling Subsystem имеет семь свойств частей: demod, rx, ant, primary-Computer, backupComputer, mod и tx
- Он имеет одно свойство-ссылку ерѕ
- Эти же восемь свойств представлены на диаграмме внутренности блока
- Имена, типы и множественность этих восьми свойств соответствуют двум диаграммам.
- Эти диаграммы представляют согласованные и взаимодополняющие представления блока Communication and Data Handling Subsystem.

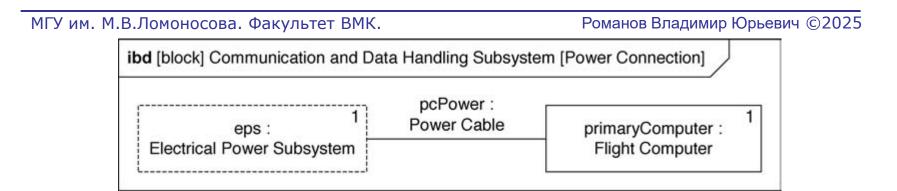
Диаграмма внутренности блока. Свойства части

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Свойство части на диаграмме внутренности блока имеет то же значение, что и свойство части в разделе частей блока на диаграмме определения блока: оно представляет структуру, внутреннюю по отношению к блоку, названному в заголовке диаграммы определения блока, структуру, из которой состоит блок.
- Обозначение свойства части на диаграмме внутренности блока представлен как прямоугольник со сплошной рамкой.
- Строка имени, которая появляется внутри прямоугольника, имеет тот же формат, что и строка, которая появляется в секции частей блока на диаграмме определения блоков: cpart name> : <type> [<multiplicity>]
- Можно отобразить множественности свойства части в правом верхнем углу прямоугольника, а не в конце строки имени в квадратных скобках

Диаграмма внутренности блока. Свойства ссылки

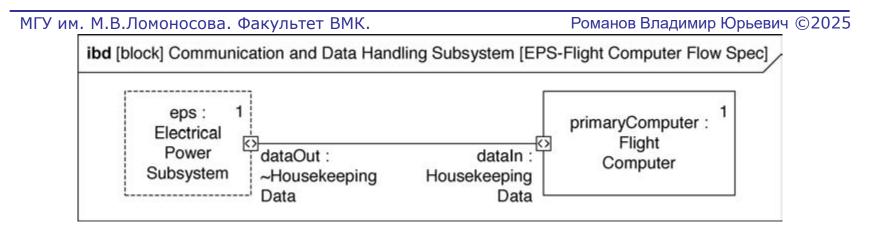
МГУ им. М.В.Ломоносова. Факультет ВМК.


- Свойство-ссылка в *диаграмме внутренности блока* имеет то же значение, что и свойство-ссылка в разделе ссылок блока в *диаграмме определения блока*:
- Представляет структуру внешнюю по отношению к блоку в заголовке диаграмме внутренности блока, которая нужна блоку для какой-то цели, либо для вызова поведения, либо для обмена материей, энергией или данными.
- Обозначение свойства-ссылки в диаграмме внутренности блока представляет собой прямоугольник с пунктирной границей.
- Строка имени внутри прямоугольника имеет тот же формат, что и строка в секции ссылок блока на диаграмме определения блока:
 - <имя ссылки> : <тип> [<множественность>]
- Можно дополнительно отобразить множественность свойствассылки в правом верхнем углу прямоугольника.

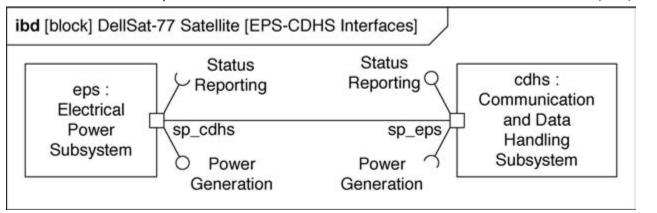
Соединители

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Соединитель между двумя свойствами в **IBD** означает, что две структуры будут иметь некоторый способ доступа друг к другу
- Можно указать *имя* и *тип соединителя*, чтобы передать дополнительную информацию о среде, которая соединяет эти две структуры. Формат этой строки имени следующий: <connector name> : <type>
- Имя соединителя является необязательным
- Тип является необязательным. Это может быть имя ассоциации, созданной между двумя блоками в модели системы
- Эта ассоциация должна связывать те же два блока, которые типизируют два свойства на концах соединителя


Соединители

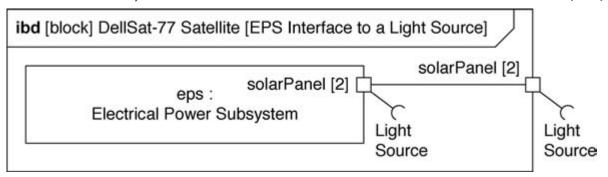
- На диаграмме показано, что бортовой компьютер (часть подсистемы связи и обработки данных) подключен к подсистеме электропитания (ссылка по отношению к подсистеме связи и обработки данных)
- Имя соединителя pcPower, тип Power Cable
- Указание имени и типа передает информацию о характере связи между этими двумя структурами.
- Тип *Power Cable* соответствует названию связи между блоком *Electric Power Subsystem* и блоком *Flight Computer на диаграмме определения блока*


МГУ им. М.В.Ломоносова. Факультет ВМК.

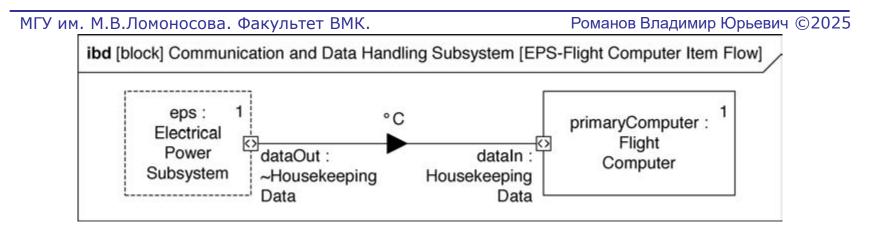
- Два связанных свойства могут быть свойствами части, свойствами-ссылками или одним из них
- Если у двух подключенных свойств есть совместимые порты (стандартные порты или порты потока) можно дополнительно подключить соединитель к этим портам, а не напрямую к свойствам
- Это означает, что эти свойства связаны в определенных точках взаимодействия на их границах
- Если вы соединяете два свойства через порты потока, вы можете передавать типы материи, энергии или данных, которые могут переносится между свойствами через эти порты

- Соединитель связывает свойство-ссылка *eps* со свойством-частью *primaryComputer* через неатомарные порты потока на их границах.
- Эти неатомарные порты потока совместимы, потому что они типизированы одной и той же спецификацией потока Housekeeping Data
- Один из двух портов dataOut, является сопряженным (показано знаком тильда ~ перед его типом)
- Сопряженный означает, что направления свойств потока в спецификации потока для этого порта обратные

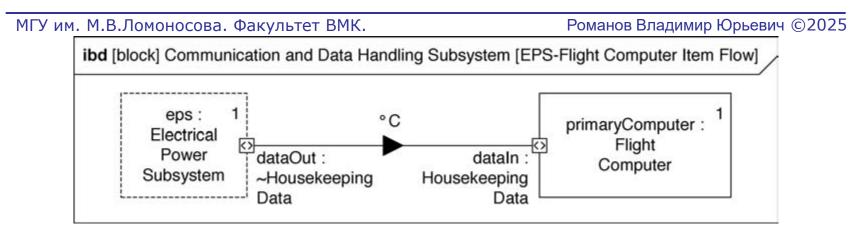
МГУ им. М.В.Ломоносова. Факультет ВМК.

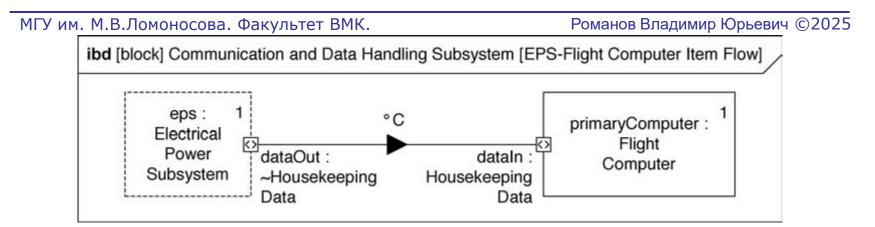


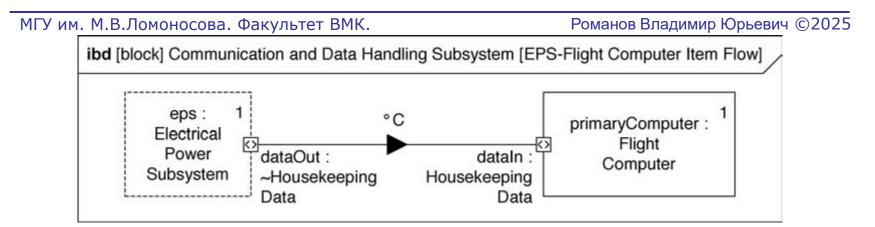
- Соединитель связывает свойство-часть *eps* со свойством-частью *cdhs* через стандартные порты на их границах
- Подсистема *Power Generation* обеспечивает интерфейс выработки электроэнергии и требует интерфейс *Status Reporting*
- Эти стандартные порты совместимы, что позволяет этим структурам обмениваться услугами через этот соединитель во время работы системы


МГУ им. М.В.Ломоносова. Факультет ВМК.

- Можно отображать порты на границе диаграммы
- Такие порты представляют собой точки взаимодействия на границе блока, который представляет диаграмма (указанного в заголовке диаграммы)
- Чтобы показать, что внутренняя часть составного блока соединена с составным через некоторую точку взаимодействия на его границе, можно соединить порт на границе с портом на свойстве-части
- Это означает, что экземпляр составной структуры может передавать запросы на поведение и потоки элементов
 - либо от внешних клиентов к этой внутренней части
 - либо от этой внутренней части к внешним поставщикам


МГУ им. М.В.Ломоносова. Факультет ВМК.


- Свойство части *eps* блока *DellSat-77 Satellite* связано с границей этого блока через стандартные порты *SolarPanel*
- Эти стандартные порты имеют обязательный интерфейс *Light Source*
- Эта модель показывает, что для подсистемы электропитания спутника требуется источник света, доступ к которому будет осуществляться из внешней среды спутника через две солнечные панели на границе спутника.


- Поток элементов представляет собой тип материи, энергии или данных, которые перемещаются между двумя структурами в системе
- Обозначение потока элементов на диаграмме закрашенная треугольную стрелку на соединителе, соединяющем два порта потока

- Поток элементов представляет собой тип материи, энергии или данных, которые перемещаются между двумя структурами в системе
- Обозначение потока элементов на диаграмме закрашенная треугольная стрелка на соединителе, соединяющем два порта потока
- Тип потока элементов отображается на метке рядом со стрелкой на соединителе
- Метка должна содержать имя блока, тип значения или сигнал существующий в модели системы

- Тип потока элементов должен быть совместим с типами портов потока на обоих концах соединителя
- Если порты потока на концах являются атомарными портами потока, то типы этих портов часто идентичны типу потока элемента на соединителе
- Если порты потока на концах являются неатомарными портами потока, то они будут типизированы спецификацией потока
- Спецификация потока должна содержать свойство потока, тип и направление которого соответствуют потоку элемента на соединителе

- Поток элемента, представляющий значение °С, протекающий по соединителю между двумя неатомарными портами потока от свойства ссылки eps к свойству части primaryComputer
- Этот поток элементов совместим с этими неатомарными портами потока, потому что спецификация потока *Housekeeping Data* действительно имеет свойство потока типа °C с соответствующим направлением

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

Диаграмма вариантов использования

Назначение диаграмм вариантов использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Диаграмма вариантов использования (диаграмма прецедентов) описывает множество вариантов использования видимых извне системы сервисов, предоставляемых системой, а также актеров, которые вызывают эти варианты использования и участвуют в них
- Диаграмма вариантов использования показывает представление системы в виде черного ящика. Поэтому она хорошо подходит для использования в качестве диаграммы показывающей контекст моделируемой системы
- Вариант использования это (поведение), которую будет выполнять ваша система. Имя варианта использования представляет собой глагольную фразу (например, Send command)
- Актером может быть человек или внешняя система, взаимодействующая с моделируемой системой

Назначение диаграмм вариантов использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Актеры, <u>вызывающие</u> вариант использования, называются первичными актерами.
- Актеры, <u>участвующие</u> в сценарии использования, называются вторичными актерами. Первичный актер также может быть вторичным.
- Каждый вариант использования должен представлять первичную цель актера.
- Название варианта использования это глагольная фраза с точки зрения актера, а не вашей системы.
- Например, если контроллеру спутникового полета необходимо отправить команду, название варианта использования "Send command", а не "Receive command"

Спецификация варианта использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Имя варианта использования: глагольная фраза.
- Область действия: сущность, которая предоставляет вариант использования (например, название организации, системы, подсистемы или компонента).
- **Первичный актер:** актер, который инициирует вариант использования (актер, цель которого представляет вариант использования).
- **Вторичные актеры:** актеры, которые предоставляют услуги системе (участвуют в сценарии использования, выполняя действия)
- Заинтересованное лицо (Stakeholder): кто-то или чтото, заинтересованное в поведении системы.
- Предварительные условия: условия, которые должны быть выполнены для начала этого варианта использования.

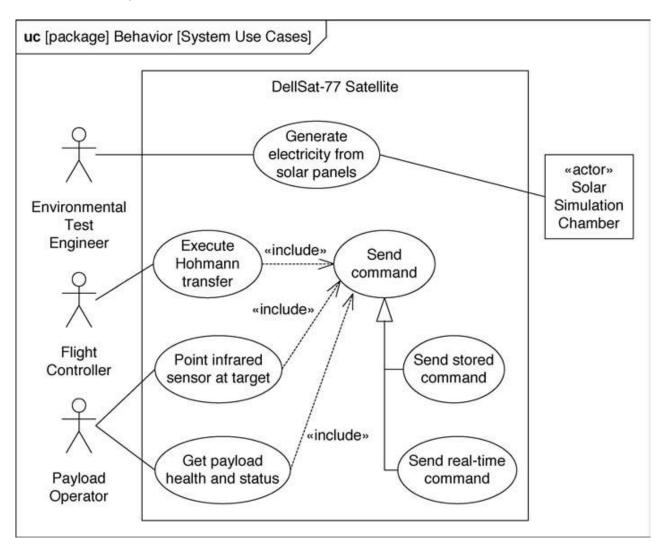
Спецификация варианта использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

- **Гарантии (постусловия)**: условия, которые должны выполняться в конце варианта использования
- Триггер: событие, запускающее вариант использования
- Основной успешный сценарий: сценарий (последовательность шагов), в котором все идет без ошибок
- **Расширения:** альтернативные последовательности шагов, ответвляющиеся от основного успешного сценария
- Сопутствующая информация: все, что нужно вашему проекту для дополнительной информации
- Можно создавать **графические спецификации** вариантов использования с помощью диаграмм действий

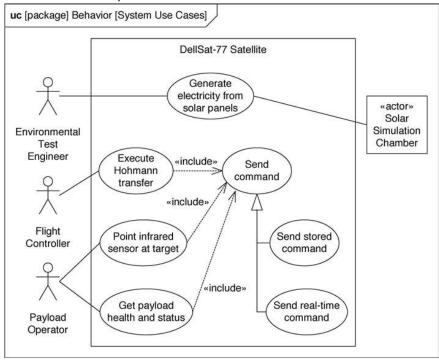
Фрейм диаграммы вариантов использования

МГУ им. М.В.Ломоносова. Факультет ВМК.


Романов Владимир Юрьевич ©2025

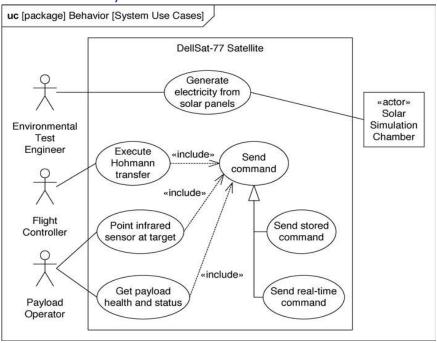
uc [package] Behavior [System Use Cases]

- Сокращение вида диаграммы для диаграммы вариантов использования — uc
- Тип элемента модели, который представляет фрейм диаграммы, может быть любым из следующих:
 - пакет
 - модель
 - библиотека модели
 - вид
- Имя диаграммы System Use Cases
- Диаграмма представляет пакет *Behavior* в модели системы. Пакет *Behavior* пространство имен для вариантов использования, показанных на диаграмме


Пример диаграммы вариантов использования

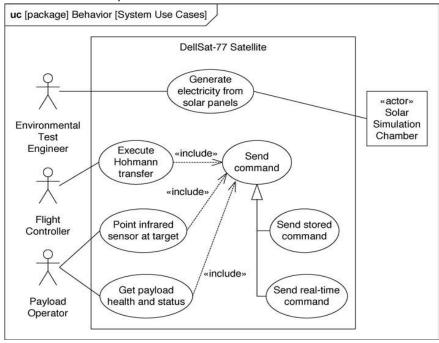
МГУ им. М.В.Ломоносова. Факультет ВМК.

Варианты использования


МГУ им. М.В.Ломоносова. Факультет ВМК.

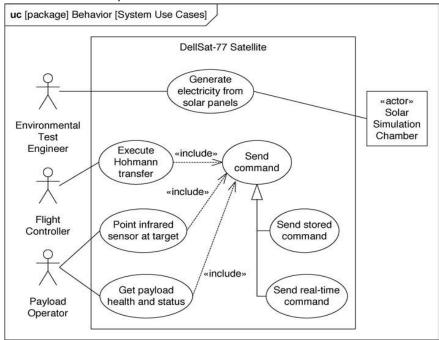
- Обозначение варианта использования эллипс (овал). Имя варианта использования (глагольную фраза) либо внутри эллипса, либо под эллипсом
- Можно создавать и отображать отношения обобщения от одного варианта использования к другому

Отношения обобщения для вариантов использования


МГУ им. М.В.Ломоносова. Факультет ВМК.

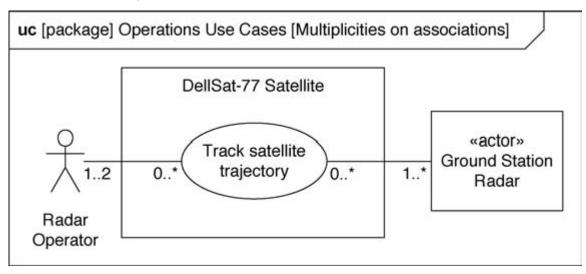
- Обобщение варианта использования Send stored command на вариант использования Send command
- Send stored command является подтипом Send command
- Эти два подтипа наследуют все, что есть у супертипа, включая его отношения с другими вариантами использования и с актерами

Граница системы


МГУ им. М.В.Ломоносова. Факультет ВМК.

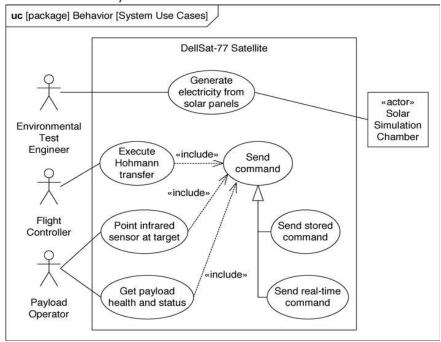
- Граница системы (также называемая субъектом) представляет собой систему, которая владеет и выполняет варианты использования на диаграмме
- Обозначение границы системы прямоугольник содержащий варианты использования
- Название субъекта внутри прямоугольника должно быть именным словосочетанием

Актеры


МГУ им. М.В.Ломоносова. Факультет ВМК.

- Существует два обозначения актера: фигурка из палочек или прямоугольник с ключевым словом «actor» перед именем
- Можно отображать обобщения между актерами на диаграмме вариантов использования. Подтип наследует все структурные и поведенческие особенности своего супертипа
- Если супертип имеет связь с вариантом использования, то подтип также наследует эту связь

Связь актеров с вариантами использования

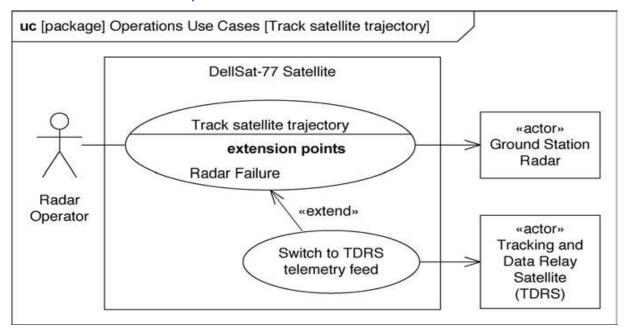

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Актер взаимодействует с системой, чтобы вызвать вариант использования или участвовать в нем, создав ассоциацию между актером и вариантом использования
- Это означает, что связь может существовать между экземплярами связанных элементов во время работы системы
- Экземпляр актера может вызывать или участвовать в экземпляре варианта использования (т. е. в выполнении варианта использования).

Включенные варианты использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

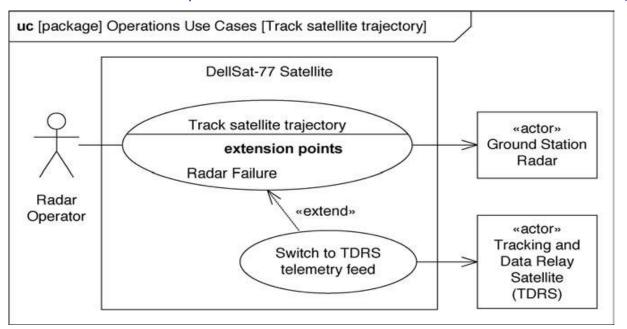
- Включенный вариант использования вариант использования являющийся целью отношения включения
- Обозначение отношения включения представляет собой пунктирную линию с открытой стрелкой и плавающим рядом с ней ключевым словом include
- Вариант использования *Send command* является примером включенного варианта использования.


Включенные варианты использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

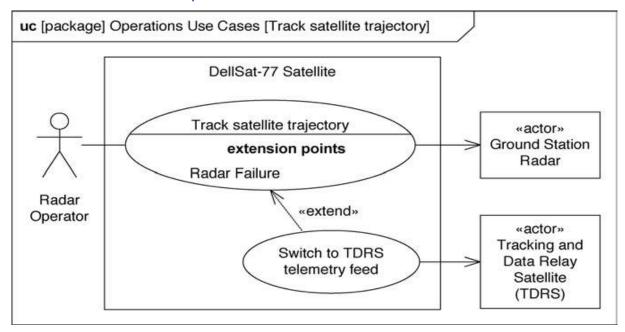
- Отношение включения означает, что когда вызывается вариант использования на исходном конце отношения, включенный вариант использования на целевом конце отношения также выполняется
- Включенное поведение варианта использования является обязательной частью варианта использования на исходной стороне
- Когда актер инициирует выполнение Execute Hohmann transfer, Point infrared sensor at target, или Get payload health and status, вариант использования Send command (или один из его подтипов) также будет выполнен
- Можно использовать отношение включения только от одного варианта использования к другому

Вариант использования с расширением


МГУ им. М.В.Ломоносова. Факультет ВМК.

- Расширяющий вариант использования тот, который является источником отношения расширения.
- Обозначение отношения расширения представляет собой пунктирную линию с открытой стрелкой и ключевым словом extend, плавающим рядом с ним.
- Вариант использования Switch to TDRS telemetry feed пример расширяющегося варианта использования

Вариант использования с расширением


МГУ им. М.В.Ломоносова. Факультет ВМК.

- Отношение расширения означает, что когда вызывается вариант использования на целевом конце, расширяющий вариант использования на исходном конце также может быть дополнительно выполнен
- Это означает, что вариант использования на целевом конце отношения расширения <u>завершен</u> сам по себе

Вариант использования с расширением

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Когда оператор радара вызывает вариант использования *Track satellite trajectory*, также может быть выполнен вариант использования *Switch to TDRS telemetry feed*, а может и нет
- Выполнение расширенного варианта использования зависит от того, удовлетворяется ли условие срабатывания в варианте использования *Track satellite trajectory*

Допустимые отношения на диаграмме вариантов использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

- Не может быть составной связи между актером и вариантом использования
- Не может быть ассоциации (любого рода) между двумя актерами
- Не может быть ассоциации (любого рода) между двумя вариантами использования

МГУ им. М.В.Ломоносова. Факультет ВМК.

Романов Владимир Юрьевич ©2025

Диаграмма деятельности

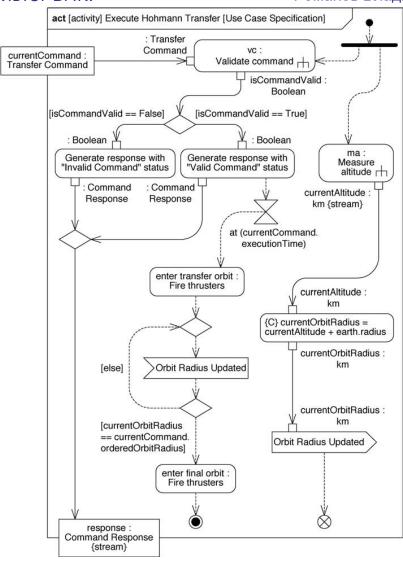
Назначение диаграммы деятельности

МГУ им. М.В.Ломоносова. Факультет ВМК.

- *Диаграмма поведения* это динамическое представление системы, выражающее последовательность действий и событий во времени
- Диаграммы деятельности, диаграммы последовательности и диаграммы состояний три варианта диаграмм поведения
- Диаграмма деятельности хорошо подходит для выражения потока объектов (материи, энергии или данных) через поведение, описывая как можно получить доступ к объектам и изменить их при выполнении этого поведения во время работы системы
- Одним из его преимуществ является его удобочитаемость
- Диаграммы деятельности могут лучше выражать сложную логику управления, чем диаграммы последовательности и диаграммы состояний
- Диаграммы деятельности уникально способны отображать непрерывное поведение системы

Фрейм диаграммы деятельности

МГУ им. М.В.Ломоносова. Факультет ВМК.


Романов Владимир Юрьевич ©2025

act [activity] Execute Hohmann Transfer [Use Case Specification]

- Сокращение вида для диаграммы деятельности —act
- Единственным допустимым типом элемента модели для диаграммы деятельности является *деятельность*.
- Фрейм диаграммы деятельности всегда представляет собой одну деятельность существующую в модели вашей системы.
- Деятельность сама по себе является элементом модели описывающий поведение системы
- Деятельность также пространство имен, как блок и пакет. Поэтому он может содержать множество именованных элементов (узлов и ребер) в иерархии модели
- Можно отобразить эти содержащиеся элементы деятельности на связанной диаграмме деятельности
- Диаграмма модели это всего лишь один вид модели. Может существовать деятельность в модели системы не отображенная на диаграмме деятельности

Пример диаграммы деятельности

МГУ им. М.В.Ломоносова. Факультет ВМК.

